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Spectral Efficiency of Random
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Abstract— Traditionally paired with impulsive communica-
tions, time-hopping code-division multiple access (TH-CDMA) is
a multiple access technique that separates users in time by coding
their transmissions into pulses occupying a subset of Ns chips out
of the total N included in a symbol period, in contrast with the
traditional direct-sequence CDMA (DS-CDMA), where Ns = N.
This paper analyzes the TH-CDMA with random spreading, by
determining whether peculiar theoretical limits are identifiable,
with both optimal and suboptimal receiver structures,
in particular in the archetypal case of sparse spreading, that is,
Ns = 1. Results indicate that the TH-CDMA has a fundamentally
different behavior than DS-CDMA, where the crucial role played
by energy concentration, typical of TH, directly relates with its
intrinsic uneven use of degrees of freedom.

Index Terms— Capacity, code-division multiple
access (CDMA), multiuser information theory, spectral
efficiency, time-hopping.

I. INTRODUCTION

WHILE Direct-Sequence CDMA (DS-CDMA) is widely
adopted and thoroughly analyzed in the literature,

Time-Hopping CDMA (TH-CDMA) remains a niche subject,
often associated with impulsive ultra-wideband communica-
tions [1]–[3]; as such, it has been poorly investigated in its
information-theoretical limits. This paper attempts to fill the
gap, by addressing a reference basic case of synchronous,
power-controlled systems, with random hopping.

Time-hopping systems transmit pulses over a subset of
chips of cardinality Ns out of the N chips composing a
symbol period. In contrast to common DS-CDMA, where
each chip carries one pulse, and therefore the number of
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transmitted pulses per symbol is equal to the number of
chips, i.e., Ns = N , time-hopping signals may contain much
fewer nonzero chips, in which pulses are effectively used,
i.e., Ns � N . Asymptotically, as the number of chips in a
symbol period grows, the fraction of filled-in chips in TH
vanishes, i.e., Ns/N → 0, making TH intrinsically different,
the performance of which cannot be derived from that of
DS. TH vs. DS reflect “sparse” vs. “dense” spreading, where
degrees of freedom, that is, dimensions of the signal space,
are “unevenly” vs. “evenly” used [4]–[8]. In our setting, as
further explored in the paper, degrees of freedom coincide with
chips; while DS “evenly” uses chips, TH adopts the opposite
strategy. In this regard, it is evident that DS and TH represent
two contrasting approaches, that will be compared, under the
assumption of same bandwidth and same per-symbol energy,
in terms of spectral efficiency.

Although we discuss hopping in the time domain, our
model and result can be interpreted in the frequency domain
as well. In that case, time-hopping and chips are mapped to
frequency-hopping and subbands, respectively, and energy
is spread or concentrated over frequency rather than time.
The natural comparison is between frequency-hopping
CDMA (FH-CDMA) vs. multicarrier CDMA (MC-CDMA)
rather than TH-CDMA vs. DS-CDMA. Under our model
assumptions, DS-CDMA and MC-CDMA are equivalent [9],
hence our conclusion extends verbatim. The asymptotic
analysis is valuable when the number of subcarriers is large,
as is the typical case of multicarrier systems (e.g. [9]), and
is particularly relevant for the emerging field of wireless
communications in the millimeter wave spectrum [10].

A. Related Work

Although we will show that there exist peculiar theoretical
limits for TH-CDMA, their derivation can be carried out
within the framework developed by Verdú and Shamai [11]
and Shamai and Verdú [12], providing a methodology that is
valid for investigating general CDMA with random spreading
in the so-called large-system limit (LSL), where K → ∞,
N → ∞, while K/N → β finite; in particular, [11] provides
expressions of spectral efficiency for DS power-controlled
systems using optimum as well as linear receivers, while [12]
removes the power-control assumption and introduces fading.
Other seminal contributions towards the understanding of
random DS-CDMA, although limited to linear receivers, are
those of Tse and Hanly [13], and Tse and Zeitouni [14].
Aside from DS-CDMA, the same framework is aptly used
for analyzing other CDMA channels, such as MC-CDMA [9].
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The analysis of optimum decoders relies, in general, on
the study of the eigenvalue distribution of random matrices
describing random spreading. Consolidated results on the
statistical distribution of such eigenvalues of DS matrices [15]
form the basis for a tractable analysis of theoretical limits in
terms of spectral efficiency. In particular, it is shown in [11]
that a fixed loss, that depends upon the load, i.e., the ratio β
between the number of users K and chips N , is incurred
with DS vs. orthogonal multiple-access. This loss becomes
negligible with optimum decoding when β � 1 while, for
β � 1, even a linear receiver such as MMSE is sufficient
for achieving this negligible loss; however, this is no longer
the case for simpler linear receivers, such as the single-user
matched filter (SUMF), that is shown to be limited in spectral
efficiency at high SNR. As a matter of fact, the above findings
on spectral efficiency of DS-CDMA strongly depend on the
statistical properties of the eigenvalue distribution, and as such
on the cross-correlation properties of the spreading sequences.
By changing the spreading strategy from DS to TH, it can be
predicted that different theoretical limits will hold, as will be
investigated below. In particular, TH matrices, as rigorously
defined in this paper, are a special subset of sparse matrices,
where the number of nonzero entries is small compared to the
total number of elements. Previous work on sparse CDMA
relies on non-rigorous derivations based on replica methods,
which are analytical tools borrowed from statistical physics,
as pioneered by Tanaka [16], who provides an expression
of capacity when inputs are binary. Montanari and Tse [17]
propose a rigorous argument for Ns → ∞, proving Tanaka’s
formula, that is valid up to a maximum load, called spinodal
(βs ≈ 1.49). Above the spinodal load, Tanaka’s formula
remains unproved. Binary sparse CDMA is also analyzed
in terms of detection algorithms, in particular in the so-
called belief propagation [17]–[19]. More recently, capacity
bounds for binary sparse CDMA are derived in [20] and [21].
Still relying on replica methods, Raymond and Saad [22] and
Yoshida and Tanaka [23] analyze two different regimes, where
Ns is either finite or random with fixed mean.

B. Main Contribution and Novelties

The main contribution of the present work is to provide
rigorous information-theoretical limits of time-hopping com-
munications, by inscribing this particular time-domain sparse
multiple access scheme into the random matrix framework
developed by Verdú and Shamai in [11], for analyzing random
spreading. The present analysis allows comparing TH vs.
DS with same energy per symbol and same bandwidth con-
straints, and, therefore, highlights the effect of the energy
“concentration,” that is typical of TH. A first contribution
consists in providing a closed form expression for spectral
efficiency of TH with optimum decoding when Ns = 1.
A second contribution is to prove that the spectral efficiency
formula for a bank of single-user matched filter obtained by
Verdú and Shamai in [11] for DS systems (Ns = N) remains
valid if Ns → ∞, N → ∞, and Ns/N → α ∈ (0, 1]. A third
contribution is to provide understanding of when TH performs
better than DS.

Based on the above contributions, we are able to present
a novel interpretation of TH-CDMA against DS-CDMA,
that offers a better understanding of the effect of sparsity
in time.

C. Paper Organization

The paper is organized as follows: in Section II we describe
the model of the synchronous CDMA channel adopted
throughout the paper, and particularized to the special case of
time-hopping. Section III contains the derivation of spectral
efficiency of TH-CDMA for different receiver structures, in
particular optimum decoding as well as sub-optimal linear
receivers, and a comparison with traditional DS-CDMA
limits [11]. Conclusions are drawn in Section IV.

D. Notations

Boldface letters denotes vectors when lowercase, and matri-
ces when uppercase. The i th vector of the standard basis of R

n

is denoted by ei . The j th element of a vector v is denoted
by [v] j and the Kronecker delta is denoted by δi j , hence,
for example, [ei ] j = δi j . The set of integers {1, . . . , N} is
denoted by [N]. The cardinality of a set A is denoted by |A|.
Gaussian distributions with mean μ and variance σ 2 are
indicated by N(μ, σ 2) and CN(μ, σ 2) when referring to real
and complex random variables (RVs), respectively; we denote
by N(x; μ, σ 2) and CN(z; μ, σ 2) their PDFs, by expliciting
the argument x ∈ R and z ∈ C, respectively. The notation
is straightforwardly generalized to multivariate distributions.
Binomial distribution when the number of trials is n and the
success probability is p is denoted by Binomial(n, p). Poisson
distribution with mean β is denoted by Poisson(β). Conver-
gence in distribution of a sequence of RVs (Xn)n�0 to X with

distribution PX is denoted Xn
d−→ PX , while convergence in

probability is denoted Xn
p−→ X . The differential entropy of X

is denoted either h(X) or h(PX ), where PX is the distribution
of X .

II. REFERENCE MODEL

Consider the traditional discrete complex-valued code-
division multiple access channel model without fading and
with power control [12], [24]:

y = Sb + n, (1)

where y ∈ C
N is the received signal vector with N chips,

b = [b1, . . . , bK ]T ∈ C
K is the vector of symbols transmitted

by the K users, S = [s1, · · · , sK ] ∈ R
N×K is the spreading

matrix, where its kth column is the spreading sequence sk of
the kth user, and n ∈ C

N is a circularly symmetric Gaussian
vector with zero mean and covariance N0 I . Here, spreading
sequences {sk}K

k=1 have unit norm, ‖sk‖ = 1, and users
are subject to a common power constraint, E [|bk|2] � E,
1 � k � K . It is assumed, as is common (e.g. [25]), that
symbols of different users are independent; this, with the
power constraint, leads to:

E [bb† ] = EI . (2)
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Fig. 1. DS-CDMA vs. TH-CDMA time-axis structure. The symbol period is divided into N = 8 chips in both figures. In DS-CDMA (Fig. 1a),
each chip is used for transmitting one pulse, hence eight pulses are transmitted per symbol period. The signature sequence shown on figure is
sk = 1√

8
[1, −1,−1, 1, 1,−1, 1, 1]T . In TH-CDMA (Fig. 1b) the symbol period is divided into Ns = 4 subgroups of Nh = 2 contiguous chips: one

pulse only per subgroup is transmitted, that is four pulses in total. The signature sequence shown on figure is sk = 1
2 [1, 0, 0, 1,−1, 0, 0, 1]T . Total energy

per symbol is identical in both cases, and equal to one. (a) DS-CDMA: N = 8. (b) TH-CDMA: N = 8, Ns = 4, Nh L = 2.

Different CDMA systems can be studied by specifying the
spreading matrix: in particular, random CDMA systems are
described by random spreading matrices. For example, in
random DS-CDMA, spreading sequences may be binary
sequences, with elements typically modeled as Bernoulli ran-
dom variables, [sk]i ∈ {−1/

√
N ,+1/

√
N }, i = 1, . . . , N ,

drawn with equal probability, or spherical sequences, with sk

a unitarily invariant unit-norm vector [11].
In order to cast TH-CDMA in the model described

by eq. (1), let N = Ns·Nh, i.e., the N chips are divided into Ns
subgroups, and each of these Ns subgroups is made of Nh
contiguous chips. The generic element of a signature sequence
can take values in {−1/

√
Ns, 0,+1/

√
Ns}, and the structure

of each sequence sk is such that there is one and only one
nonzero element within each of the Ns subgroups. Therefore,
the number of nonzero elements of each signature sequence
is fixed to Ns. We formally introduce the new structure of
spreading sequences by the two following definitions.

Definition 1 (Sparse Vector): A vector s = [s1, . . . , sN ]T ∈
C

N is S-sparse if the subset of its nonzero elements has
cardinality S, i.e., |{si 
= 0 : i = 1, . . . , N}| = S. �

Definition 2 ((Ns, Nh)-Sequence, TH and DS Sequences
and Matrices): A vector s = [s1, . . . , sN ]T ∈ C

N×1 is a
(Ns, Nh)-sequence when:

1) N = Ns · Nh, with Ns ∈ N and Nh ∈ N;
2) for all 1 � m � Ns, the vector [s1+(m−1)Nh , . . . , smNh ]T

is 1-sparse, where the nonzero element is either
−1/

√
Ns or 1/

√
Ns with equal probability, and is drawn

uniformly at random.
A (Ns, Nh)-sequence with Ns < N is a Time-Hopping (TH)
sequence; the special case Ns = N , i.e., (N, 1)-sequences
corresponds to binary DS sequences, that will be referred to
below simply as DS sequences. A matrix S is called TH vs. DS
matrix when its columns correspond to TH vs. DS sequences.

The set of all possible TH vs. DS matrices is indicated as
TH vs. DS ensemble. �

Figure 1 shows the organization of the time axis for
DS-CDMA (Fig. 1a) and compares this time pattern against
TH-CDMA (Fig. 1b). Note that, for Ns = N , TH-CDMA
reduces to DS-CDMA. The unit-norm assumption on spread-
ing sequences implies that the ensuing comparison of
TH-CDMA vs. DS-CDMA is drawn under the constraint of
same energy per sequence. Note that the Ns = 1 case models
a strategy of maximum energy concentration in time, while
maximum energy spreading in time corresponds to making
Ns = N , as in DS. Also note that the two systems operate
under same bandwidth constraint.

III. SPECTRAL EFFICIENCY OF TH-CDMA

In this section, spectral efficiency of TH-CDMA is derived
for different receiver structures, and compared against consol-
idated results for DS-CDMA [11].

The section is organized as follows: we first analyze the
case of optimum decoding (Section III-A), then proceed to
linear receivers in sections III-B and III-C for single-user
matched filters (SUMF), and decorrelator/MMSE receivers,
respectively. Finally, Section III-D contains a synposis.

A. Optimum Decoding

1) Theoretical Framework: In general terms, a key per-
formance measure in the coded regime is spectral efficiency
Copt (b/s/Hz) as a function of either signal-to-noise ratio γ or
energy per bit Eb-to-noise-N0, Eb/N0.

Referring to model of eq. (1), where the dimension of
the observed process is N , spectral efficiency is indicated as
Copt

N (γ ) and is the maximum mutual information between
b and y knowing S over distributions of b, normalized
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to N . Under constraint (2), Copt
N (γ ) (b/s/Hz) is achieved with

Gaussian distributed b, and it is expressed by [11], [26]–[29]:

Copt
N (γ ) = 1

N
log2 det(I + γ SST), (3)

where noise has covariance Σn = N0 I and γ is given by [25]:

γ :=
1
K E

[‖b‖2
]

1
N E

[‖n‖2
] =

1
K · bEb

1
N · NN0

= 1

β
· b

N
· Eb

N0
= 1

β
· Copt

N · η,

(4)

where β := K/N is the load, η := Eb/N0, b is the
number of bits encoded in b for a capacity-achieving system,
and therefore b/N coincides with spectral efficiency Copt

N of
eq. (3). Since N is equal to the number of possible complex
dimensions, spectral efficiency can, therefore, be interpreted
as the maximum number of bits per each complex dimension.
Note that the number of complex dimensions coincides in our
setting with the degrees of freedom of the system, that is, with
the dimension of the observed signal space.

Eq. (3) can be equivalently rewritten in terms of the set of
eigenvalues {λn(SST) : n = 1, . . . , N} of the Gram matrix SST

as follows:

Copt
N (γ )= 1

N

N∑

n=1

log2(1+λnγ ) =
∫ ∞

0
log2(1 + λγ )dFSST

N (λ),

(5)

where FSST

N (x) is the so called empirical spectral distribu-
tion (ESD) defined as [27]:

FSST

N (x) := 1

N

N∑

n=1

�{λn(SST) � x}, (6)

that counts the fraction of eigenvalues of SST not larger than x .
Being S random, so is the function FSST

N . The limit distribution

of the sequence {FSST

N : N � 1}, when it exists, is called
limiting spectral distribution (LSD) and denoted F; it turns
out that F, differently from FSST

N , is usually nonrandom [30].
In particular, the regime of interest, referred to as large-system
limit (LSL), is that of both N → ∞ and K → ∞ while
keeping K/N → β finite. In the LSL, spectral efficiency
Copt

N (γ ), that is a random variable, may converge to

Copt(γ ) :=
∫ ∞

0
log2(1 + λγ )dF(λ), (7)

where the convergence mode has to be specified. In general,
convergence of FSST

N to F does not imply convergence of Copt
N

to Copt, that must be proved.
Therefore, finding the spectral efficiency of CDMA systems

with random spreading in the LSL regime reduces to finding
the LSD F(λ), that depends on the spreading sequence family
only; hence, in the rest of this section, we find the LSD of
TH-CDMA with Ns = 1, which corresponds to a maximum
energy concentration in time, as well as asymptotic behaviors
of TH-CDMA systems with generic Ns.

2) LSD and Spectral Efficiency of TH-CDMA Systems With
Ns = 1: While for DS-CDMA, spectral efficiency can be
computed directly from Marc̆enko and Pastur result on the
ESD of matrices with i.i.d. elements [15], it appears that no
analog result is available for neither TH-CDMA matrices nor
dual matrices describing frequency-hopping.

We hereby derive the LSD and properties of the ESD of
synchronous TH-CDMA when Ns = 1 by means of the
method of moments. In Theorem 1 we derive properties of
the Lth moment of the ESD FSST

N with Ns = 1, denoted by:

mL := 1

N
tr(SST)L =

∫ ∞

0
λLdFSST

N (λ),

in particular a closed form expression of E [mL ] for TH
matrices with Ns = 1 for finite K and N , and we prove con-
vergence in probability to moments of a Poisson distribution
with mean β in the LSL.

Theorem 1: Suppose that S ∈ R
N×βN is a time-hopping

matrix with Ns = 1. Then, in the LSL, mL converges in
probability to the Lth moment of a Poisson distribution with
mean β, i.e.:

mL
p−→ m̄L :=

L∑

	=1

{
L

	

}
β	,

where
{

L
	

}
denotes a Stirling number of the second

kind.
Proof: See Appendix A. �

In general, the Carleman condition guarantees that the set
of moments uniquely defines the probability distribution. For
the sake of completeness, it is verified in Appendix B. Hence,
the set of moments {m̄L}L�1 uniquely defines the Poisson
distribution, and Theorem 1 implies that the LSD is a Poisson
law with mean β:

Corollary 1: Suppose that S ∈ R
N×βN is a time-hopping

matrix, as specified in Definition 2, with Ns = 1. Then,
the ESD of {SST : N � 1} converges in probability to the
distribution function F of a Poisson law with mean β:

FSST

N (x)
p−→ F(x) =

∑

k�0

βke−β

k! �{k � x}. (8)

In terms of measures, TH-CDMA is thus characterized by
the purely atomic measure given by:

μTH :=
∑

k�0

βke−β

k! δk =
∑

k�0

fk(β)δk, (9)

being fk(β) := βke−β/k!, and δk the point mass distribution,
i.e., δk(A) = 1 if k ∈ A, and δk(A) = 0 otherwise. Whence,
F(x) = μTH((−∞, x]) = μTH([0, x]). The above implies
peculiar properties of TH-CDMA when compared against
DS-CDMA. For convenience, we report here the
Marc̆enko-Pastur law, that is the LSD of eigenvalues of
DS-CDMA matrices (see Definition 2), which has measure:

μDS = (1 − β)+δ0 + μDS
ac , (10)

where (x)+ := max
{
0, x

}
, and μDS

ac is the absolutely continu-
ous part of μDS with density (Radon-Nikodym derivative with
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Fig. 2. Density function of the LSD for DS-CDMA in solide line, and
infinitesimal masses of atomic measures of DS-CDMA and TH-CDMA
(Poisson law) for β = 1/2 in cross and dots, respectively. DS-CDMA and
TH-CDMA with Ns = 1 are governed by Marc̆enko-Pastur and Poisson laws,
respectively.

respect to the Lebesgue measure m):

dμDS
ac

dm
(x) =

√
(	+ − x)(x − 	−)

2πx
�{x ∈ [	−, 	+]}, (11)

where 	± = (1 ± √
β)2.

Fig. 2 shows Marc̆enko-Pastur and Poisson laws for
β = 1/2. The Marc̆enko-Pastur law has, in general, an
absolute continuous part with probability density function
showed in solid line and an atomic part formed by a point
mass at the origin showed with a cross at height 1/2. The
Poisson law has a purely atomic (also known as discrete, or
counting) measure with point masses at nonnegative integers
showed by dots with heights given by fk(β) (envelope showed
in dashed line).

We use the Poisson LSD to find the spectral efficiency of
TH-CDMA with Ns = 1 in the LSL, i.e. (see eq. (5)):
∫ ∞

0
log2(1 + λγ )dFSST

N (λ)
p−→

∫ ∞

0
log2(1 + λγ )dF(λ).

(12)

It is important to remark that the above convergence in
probability does not follow immediately; in fact, convergence
in law does only imply convergence of bounded functionals,
but log2(1 + λγ ) is not bounded on the support of F(λ).
We prove eq. (12) in Appendix C, and thus:

Copt
N (γ )

p−→ Copt(γ ) =
∑

k�0

βke−β

k! log2(1 + kγ ). (13)

The capacity of a TH-CDMA system with Ns = 1 can be
interpreted as follows. Rewrite eq. (13) as follows:

Copt(γ ) =
∑

k�0

fk(β)Ck(γ ), (14)

Fig. 3. Normalized rank r (solid lines) vs. load β. The dashed line represents
an upper bound of r for TH-CDMA with Ns = 2. Crosses, circles, and squares
(generally referred to as marks), are obtained by evaluating E [rank S/N ] by
Monte-Carlo simulations of a finite-dimensional system with N = 50, for
TH-CDMA with Ns = 1, TH-CDMA with Ns = 2, and DS-CDMA,
respectively. Error bars represent one standard deviation of rank S/N .

where Ck(γ ) := log2(1 + kγ ). Hence, Copt(γ ) is a sum
of channel capacities Ck(γ ), k ∈ N, weighted by probabili-
ties fk(β). Since Ck(γ ) is the capacity of a complex AWGN
channel with signal-to-noise ratio kγ , k ∈ N, Copt(γ ) is equal
to the capacity of an infinite set of complex AWGN channels
with increasing signal-to-noise ratio kγ paired with decreasing
probability of being used fk(β). Therefore, TH-CDMA has the
same behavior of an access scheme that splits the multiaccess
channel into independent channels, each corrupted by noise
only, with power gain equal to k, and excited with probabil-
ity fk(β). Since fk(β) is also the probability that k signatures
have their nonzero element in the same dimension, that is for
TH-CDMA associated with the event of waveforms having
their pulse over the same chip, for small β, that is, β � 1,
channels with high capacity (for a fixed γ ), that is, with k � 1,
are less frequently used than channels with low capacity; in
general, channels with k in a neighborhood of β are used most
frequently.

One noticeable difference between DS and TH matrices
is that in the former the maximum eigenvalue
λmax

a.s.−→(1 + √
β)2 [31], and thus also λmax

p−→(1 + √
β)2,

while in the latter λmax
p−→∞.

Moreover, there exists a nonzero probability f0(β) = e−β

such that, also for β > 1, the zero-capacity channel (k = 0)
is excited. This probability, that is the amplitude of the Dirac
mass at λ = 0, is equal to F(0); it equals the probability that
a chip is not chosen by any user or, equivalently, the average
fraction of unused chips; and, finally, it equals the high-SNR
slope penalty, as we will detail below.

It is interesting to analyze the behavior of rN := rank S/N ,
that is a random variable for finite N . Figure 3 shows with
marks r̄N := E [rN ] for TH-CDMA with Ns = 1 and Ns = 2,
and for DS-CDMA, when N = 50: Monte-Carlo simulations
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provide point data, represented by marks, with error bars
showing one standard deviation of rN . Solid lines represent
the limiting value r of rN as N → ∞. We will show in the
below Theorem 2 that, for Ns = 1, rN

p−→1−e−β . Almost sure
convergence does hold for the Marc̆enko-Pastur law, hence for
DS-CDMA one has rN

a.s.−→ min{1, β}. For TH-CDMA with
increasing Ns, one might expect r of TH-CDMA to tend to that
of DS-CDMA, also suggested by the behavior of the Ns = 2
case shown on figure. In the general Ns > 1 case, we are
able to find the upper bound r � 1 − e−Nsβ only, holding
in probability, that is derived in the below Corollary 2, and
shown with the dashed line on Fig. 3.

Corollary 2: Under the same assumptions of Theorem 1,
it results rN := 1

N rank S
p−→1 − e−β .

Proof: When Ns = 1, rank S is equal to the number of
nonempty rows of S. Therefore, rN

p−→1 − e−β .
Remark 1: From the definition of ESD, NFSST

N (0) is equal
to the number of zero eigenvalues, that also provides the
dimension of the nullity subspace of SST. Since, from the
Rank-Nullity Theorem, dim Ker SST = N − dim Im SST =
N − rank SST = N − rank S, it results FSST

N (0) =
1
N rank S

p−→ 1 − e−β .
Theorem 2: Let Ns � 1. An upper bound to r is given by

r � min{β, 1 − e−Nsβ}, which holds in probability.

Proof: Rewrite S as follows: S = [ST
1, · · · , ST

Ns
]T, where

{Si }Ns
i=1 are Nh × K matrices, Nh = N/Ns . Using the

inequality rank(A + B) � rank A + rank B, we can upper
bound rank S as follows: rank S �

∑Ns
i=1 rank Si . Since

{Si }Ns
i=1 are independent, by Theorem 2 one has r � 1−e−Nsβ

in probability. Moreover, since rank S/N � min{1, β} surely,
we also have r̄ � β. �

3) Asymptotics: In the following, spectral efficiency, when
expressed as a function of η := Eb/N0, will be indicated
by1 C (b/s/Hz), as suggested in [25], rather than C (b/s/Hz),
that denotes spectral efficiency as a function of γ. While an
expression of C can be found in terms of the LSD, the same
is more difficult for C, given the nonlinear relation between
C and C: C = C(ηC/β) (c.f. eq. (4)).

In order to understand the asymptotic behavior of C in
the low-SNR and high-SNR regimes, i.e., as η → ηmin :=
infC>0 η(C) and η → ∞, respectively, Shamai and Verdú [12]
and Verdú [25] introduced the following four relevant
parameters:

ηmin: the minimum energy per bit over noise level required
for reliable communication;

S0: the wideband slope (b/s/Hz/(3 dB));
S∞: the high-SNR slope (b/s/Hz/(3 dB));
L∞: the high-SNR decibel offset.

In our setting, the low-SNR and high-SNR regimes also
correspond to C → 0 (so called wideband regime [25]) and
C → ∞.

The minimum energy-per-bit ηmin and the wideband slope
S0 (b/s/Hz/(3 dB)) characterize the affine approximation

1In this subsection, we drop the superscript “opt” for ease of notation.

of C vs. ηdB := 10 log10 η as C → 0:

ηdB = ηdB
min + 10 log10 2

S0
C + o(C), C → 0. (15)

From eq.s (15) and (4), one can find ηmin and S0 as follows:

ηmin = lim
γ↓0

βγ

C(γ )
= β

C ′(0)
= β

E [λ]
ln 2, (16)

S0 = −2 ln 2
(C ′(0))2

C ′′(0)
= 2

E [λ]2

E
[
λ2

] , (17)

where the expression in the last equality of both
eqs. (16) and (17) is obtained by differentiating log2(1 + λγ )
with respect to λ under the integral sign.

The high-SNR slope S∞ (b/s/Hz/(3 dB)) and high-SNR
decibel offset L∞ characterize the affine approximation
of C vs. η as C → ∞:

ηdB = 10 log10 2

S∞
C + L∞10 log10 2 + O(log10 C), C → ∞.

Equivalently, the following relation holds in terms of C vs. γ:

C(γ ) = S∞[log2 γ − L∞] + o(1), γ → ∞,

from which S∞ and L∞ are derived as:

S∞ = lim
η↑∞

C(η)

ln η
ln 2 = lim

η↑∞ ηC′(η) ln 2

= lim
γ↑∞ γ C ′(γ ) ln 2 = 1 − F(0) (18)

L∞ = lim
γ↑∞

[
log2 γ − C(γ )

S∞

]
, (19)

where the last equality in eq. (18) is obtained by differentiating
log2(1 + λγ ) with respect to γ and applying the dominated
convergence theorem to pass the limit under the integral sign.

For TH-CDMA with Ns = 1, it can be shown by direct
computations that the four above parameters are given by:

ηmin = ln 2, (20)

S0 = 2
β

1 + β
, (21)

S∞ = 1 − e−β, (22)

L∞ = − 1

1 − e−β

∑

k>1

βke−β

k! log2 k. (23)

For the generic case Ns > 1, one can show that
asymptotics in the wideband regime are the same as above
(see eq. (20) and (21)). More precisely, we show in
Appendix D that E [λ] = β surely for any matrix
ensemble where columns of S are normalized, and that
1
N

∑N
i=1 λ2

i
p−→ β(β + 1). Therefore, from eqs. (16) and (17),

one has ηmin = ln 2 surely for any Ns and S0 in probability
as in eq. (21), respectively.

Comparing eqs. (20)-(23) with DS-CDMA results [11],
shows that TH-CDMA has same wideband asymptotic
parameters, ηmin and S0, as DS-CDMA, while different
high-SNR parameters, S∞ and L∞. In particular, in the
high-SNR regime, DS-CDMA achieves S∞ = min{1, β}
while TH-CDMA achieves S∞ = 1−e−β , that is, TH-CDMA
incurs in a slope penalty given by e−β . At very high loads,
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Fig. 4. Spectral efficiency Copt (b/s/Hz) of TH-CDMA vs. DS-CDMA with optimum decoding as a function of Eb/N0 (dB) with load β = 1/2. Orthogonal
multiple access is reported for comparison (gray solid line). The Ns = 1 TH-CDMA case is plotted for theoretical-values (blue solid line) vs. simulated data
(blue triangles). The Ns = 2 TH-CDMA case reports only simulated data (blue dots). DS-CDMA is shown with red solid line. Note on figure that TH-CDMA
with Ns = 1 and Ns = 2 have both similar performance as DS in the wideband regime (Eb/N0 → ln 2), while departing from it for high SNR when Ns = 1.
Note on figure that the loss incurred with TH drops to a very small value with as early as Ns = 2.

β � 1, this penalty becomes negligible, and TH-CDMA
high-SNR slope tends to that of DS-CDMA.

Figure 4 shows spectral efficiency C (b/s/Hz) of TH-CDMA
with Ns = 1 (blue solid line) vs. DS-CDMA (red solid line)
as a function of Eb/N0 (dB) with load β = 1/2; simulated
data for TH with Ns = 1 are also represented on figure
(blue triangles) to highlight agreement with theoretical values.
Orthogonal multiple access is also reported for comparison
(gray solid line) and represents an upper bound on the sum-
rate of a multiuser communication scheme. In the wideband
regime, where C → 0, both TH-CDMA and DS-CDMA
achieve ηmin = ln 2 and same wideband slope S0. At the
high-SNR regime, where Eb/N0 → ∞, DS achieves larger
high-SNR slope than TH. A simulated case of Ns = 2 was also
considered in order to understand the effect on C of increased
Ns for TH-CDMA (see blue dots on figure). While for any
finite Ns the spectral efficiency gap between DS-CDMA
and TH-CDMA grows as Eb/N0 increases, figure shows
that for common values of Eb/N0, e.g. Eb/N0 < 20 dB,
Ns = 2 pulses only are sufficient to reduce the gap to very
small values. Figure 5 shows spectral efficiency Copt (b/s/Hz)
for TH with Ns = 1 (blue solid line) and Ns = 2 (dotted line),
and for DS (red solid line), for Eb/N0 = 10 dB. It is shown

that TH achieves lower spectral efficiency with respect to DS.
However, the loss is negligible for both β � 1 and β � 1.
The gap between the two spectral efficiencies can be almost
closed with increased, yet finite, Ns. Simulations suggest that
Ns = 2 is sufficient to significantly reduce the gap.

B. Single-User Matched Filter

The output of a bank of SUMF is given by eq. (1), that is,
y = Sb + n. Focusing on user 1, one has:

y1 = sT
1 y

= b1 +
K∑

k=2

ρ1kbk + n1

= b1 + z1, (24)

where ρ1k := sT
1sk . As shown in [11], spectral efficiency for

binary or spherical DS-CDMA when each SUMF is followed
by an independent single-user decoder knowing S is [11], [12]:

Csumf
DS (β, γ ) = β log2

(
1 + γ

1 + βγ

)
(b/s/Hz). (25)

This result is general, and in particular it does not assume
that the distribution of neither input nor interference terms is
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Fig. 5. Spectral efficiency Copt (b/s/Hz) as a function of β, for
Eb/N0 = 10 dB. DS and TH with Ns = 1 are shown in solid lines, indicating
that curves derive from closed form expressions, while values for TH with
Ns = 2 are shown in dots, indicating that they derive from simulations.
Orthogonal access is also reported for reference (gray solid line).

Gaussian. Note, however, that, in this case, Gaussian inputs
are optimal. In fact, for long spreading sequences, by virtue
of the strong laws of large numbers, one has

∑K
k=2 ρ2

1k
a.s.−→β,

and therefore the mutual information per user in bits per
channel use is:

I (y1; b1|S) = I
(
y1; b1

∣
∣ρ12, . . . , ρ1K

)

= E

[

log2

(

1 + γ

1 + γ
∑K

k=2 ρ2
1k

)]

a.s.−→ log2

(
1 + γ

1 + γβ

)
. (26)

A similar result does hold for I (y1; b1) as well.
When interference is not Gaussian, we may expect spectral

efficiency to assume a very different form than above. This
will prove to be the case for the mutual information of
TH-CDMA assuming Gaussian inputs, with finite Ns, as
investigated below.

Theorem 3: Suppose that S ∈ R
N×βN is a time-hopping

matrix with generic Ns < ∞, and that the receiver is a
bank of single-user matched filters followed by independent
decoders, each knowing S. Assuming Gaussian inputs, mutual
information I sumf

TH (b/s/Hz) is given by:

I sumf
TH (β, γ, Ns) := β I (y1; b1|S)

= β ·
∑

k�0

(N2
s β)k

k! e−N2
s β log2

(
1 + γ

1 + k
N2

s
γ

)
. (27)

Proof: See Appendix E.
In particular, for the Ns = 1 case, mutual information is:

I sumf
TH (β, γ ) = β ·

∑

k�0

βk

k! e−β log2

(
1 + γ

1 + k γ

)
, (28)

that can be compared to, and interpreted similarly to, eq. (13).
Note that eq. (28) provides the mutual information of

TH-CDMA with Ns = 1, and not the spectral efficiency, since

Fig. 6. Probability density function of the real (or imaginary) component of
the noise-plus-interference term of eq. (24) for TH sequences with γ = 13 dB,
β = 1, and Ns = 1 (blue solid line), and comparison against a Gaussian
PDF with same mean and variance (red dashed line). This example shows
that, contrary to DS-CDMA, Psumf

Z as given in eq. (33) may be, in general,
far from Gaussian.

Gaussian inputs, rather than optimal ones, are considered.
Hence, we know that spectral efficiency will be larger than or
equal to I sumf

TH (β, γ ). This mutual information expression is,
however, sufficient to catch a significant difference between
DS-CDMA and TH-CDMA. By comparing eqs. (25) and (28),
we can claim that, while spectral efficiency for DS is bounded
at high γ, being:

lim
γ→∞ Csumf

DS (β, γ ) = β log2

(
1 + 1

β

)
, (29)

spectral efficiency for TH is unbounded. We can indeed
derive the below stronger result:

Corollary 3: Under the hypotheses of Theorem 3,
the high-SNR slope of the mutual information (27)
of TH is:

S sumf∞,TH = βe−N2
s β. (30)

Remark 2: The maximum slope as a function of β is
achieved at β = 1/N2

s , for which S sumf∞,TH = 1/(eN2
s ). Since

Ns � 1, the global maximum is 1/e, and the optimum
load is β = 1. This behavior directly provides an insight
from a design standpoint: at high-SNR, the number of chips
such that an increase in Eb/N0 yields a maximum increase
in terms of mutual information is equal to the number of
users. As a comparison, for optimum decoding, S∞ increases
monotonically with β, and its supremum is supS∞ = 1.

Differently from DS, when each user decoder does not have
knowledge about cross-correlations of signature sequences
of other users, mutual information assumes a very different
form, as derived in the following theorem.

Theorem 4: Suppose that S ∈ R
N×βN is a time-hopping

matrix with generic Ns < ∞, and that the receiver is a
bank of single-user matched filters followed by independent
decoders, each knowing the signature sequence of the user to
decode only. Assuming Gaussian inputs, mutual information
I sumf
TH� (β, γ, Ns) (bits/s/Hz) is given by:
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Fig. 7. Spectral efficiency Csumf vs. Isumf (b/s/Hz) as a function of Eb/N0 (dB) with load β = 1. Closed form expressions of spectral efficiency vs. mutual
information are plotted in solid vs. dashed lines. Simulated mutual information is represented by dotted lines. On figure: SUMF, TH-CDMA, Ns = 1, Ns = 2
and Ns = 5, blue dashed lines; SUMF, TH-CDMA�, Ns = 1, blue dashed line; DS-CDMA, red solid line; TH-CDMA with Ns = αN when N → ∞,
blue solid line, coinciding with red solid line; TH-CDMA� with Ns = 2 and Ns = 5, blue dotted lines. Note on figure the crossover of SUMF, TH-CDMA,
Ns = 2 and SUMF, TH-CDMA�, Ns = 2, that shows an example of mutual information becoming greater than conditional mutual information. For reference,
orthogonal multiple-access in gray line.

I sumf
TH� (β, γ, Ns) := β I (y1; b1) = β[h(Psumf

Y ) − h(Psumf
Z )],

(31)

where Psumf
Y and Psumf

Z are the two following Poisson-
weighted linear combinations of Gaussian distributions:

Psumf
Y =

∑

k�0

(β N2
s )k

k! e−βN2
s CN(0, 1 + γ + kγ /N2

s ), (32)

Psumf
Z =

∑

k�0

(β N2
s )k

k! e−βN2
s CN(0, 1 + kγ /N2

s ). (33)

Proof: See Appendix F.
Despite decoders partial knowledge of S, a same high-SNR

slope as that achieved when decoders have knowledge of S
is verified in the Ns = 1 case:

Corollary 4: Under the hypotheses of Theorem 4, the
high-SNR slope of the mutual information I sumf

TH� (β, γ, 1) is:

Ssumf
∞,TH� = βe−β. (34)

Based on eq. (33), it can be easily checked that the kurtosis
of the interference-plus-noise z1, that we denote Z since it is
independent of the user, is:

κZ := E [|Z |4]
E

[|Z |2]2 = 2 + 2

N2
s

· βγ 2

(1 + βγ )2 , (35)

that is always greater than 2, hence showing non-Gaussianity
of Z for any β, γ and Ns. This non-Gaussian nature is
represented on Fig. 6, that shows the interference-plus-noise
PDF Psumf

Z (solid blue line on figure), as given by eq. (33)
when β = 1, γ = 13 dB and Ns = 1, vs. a Gaussian
distribution with same mean and variance (red dashed line
on figure). As shown by figure, Psumf

Z , that is a linear
combination, or “mixture,” of Gaussian distributions with
Poisson weights, cannot be reasonably approximated with a
single Gaussian distribution; hence, the Standard Gaussian
Approximation does not hold in general. This is the reason
for the mutual information gap between DS and TH.

The wideband regime is not affected by decoders’ knowl-
edge about crosscorrelations between signature sequences, as
summarized by the below corollary, which proof is omitted
for brevity.

Corollary 5: The wideband regime parameters derived
from either eq. (28) or eq. (31) are ηmin = ln 2 and:

Ssumf
0,TH = 2β

1 + 2β
. (36)

Differently from above, where Ns is finite and does not
depend on N , we now investigate the case Ns = αN with
α ∈ (0, 1), while N → ∞. We show, using an approach
similar to that developed in [11], that spectral efficiency of a
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Fig. 8. Spectral efficiency Csumf vs. mutual information Isumf as a function
of β for fixed Eb/N0 = 10 dB. DS and TH with Ns/N → α ∈ (0, 1)
are shown in red solid line, and represent the worst performance on figure.
Dashed lines correponds to either TH knowing S (large dashing) or TH where
decoders know the spreading sequence of the user to decode only (small
dashing). Orthogonal access is reported for reference (gray solid line).

TH channel with Ns = αN , α ∈ (0, 1), is equal to that of a
DS system, irrespectively of α ∈ (0, 1).

Theorem 5: Suppose that S ∈ R
N×βN is a time-

hopping matrix with Ns = αN , α ∈ (0, 1), and that
the receiver is a bank of single-user matched filters
followed by independent decoders knowing cross-correlations
and input distributions of interfering users. Capacity
Csumf(ρ12, . . . , ρ1K , Pb2 , . . . , PbK ) of the single-user channel
of eq. (24), expressed in bits per user per channel use,
converges almost surely to:

Csumf(ρ12, . . . , ρ1K , Pb2 , . . . , PbK )
a.s.−→ log2

(
1 + γ

1 + βγ

)
,

(37)

irrespective of α.
Proof: See Appendix H.

Based on eq. (37), spectral efficiency coincides with
that of DS sequences, as given by eq. (25). As a matter
of fact, Theorem 5 is the generalization of a result of
Verdú and Shamai [11] to TH matrices where the fraction of
nonzero entries is α, to which it reduces for α = 1.

Figure 7 shows spectral efficiency Csumf vs. mutual
information Isumf (b/s/Hz) as a function of Eb/N0 (dB) for
DS-CDMA (eq. (25), red solid line on figure), TH-CDMA
knowning cross-correlations between users (eq. (28),
blue large-dashed lines) and TH-CDMA without knowing
cross-correlations between users, indicated as TH-CDMA�

(eq. (31), blue small-dashed line), with unit load β = 1.
Spectral efficiency of TH-CDMA when Ns = αN , α ∈ (0, 1),
as N → ∞, is equal to that of DS (c.f. eq. (37), red solid line).
As previously, the orthogonal case (gray solid line) is shown
for reference. Note that spectral efficiency is bounded in
DS-CDMA and in TH-CDMA when Ns = αN , α ∈ (0, 1), as
N → ∞; the value of the limit is 1 on figure (c.f. eq. (29)).
On the contrary, mutual information is not bounded for both

TH-CDMA and TH-CDMA�; in particular, when Ns = 1,
both TH-CDMA and TH-CDMA� grow with similar slope
as Eb/N0 increases. Mutual information of systems using
multiple pulses per symbol is shown for TH-CDMA� with
Ns = 2 (small-dashed line) and for TH-CDMA with Ns = 2
(eq. (27), large-dashed line). These Ns 
= 1 cases show that
mutual information decreases with respect to the one pulse per
symbol case. Figure 8 shows spectral efficiency Csumf (b/s/Hz)
as a function of β for fixed Eb/N0 = 10 dB. Similarly as on
fig. 7, TH with Ns = 1 outperforms other schemes, with and
without complete knowledge of S. As β → ∞, interference
becomes increasingly Gaussian, and mutual information of
TH reduces to that of DS, tending to the same limit 1/ ln 2.

C. Decorrelator and MMSE

The output of a bank of decorrelators, following the
discrete channel y = Sb + n (c.f. eq. (1)), is given by:

r = S+ y = S+Sb + S+n, (38)

where S+ denotes the Moore-Penrose pseudoinverse; if
R = STS is invertible, then S+ = (STS)−1 ST, otherwise S+,
according to the Tikhonov regularization, exists and can be
computed as the limit (STS + α I)−1ST as α → 0+.

In DS-CDMA, for any fixed β ∈ (0, 1), S is almost surely
full rank as N → ∞, and therefore, R is almost surely
invertible, in which case eq. (38) becomes:

r = b + z, (39)

where z ∼ CN(0, R−1N0). Assuming independent single-user
decoders, spectral efficiency is [11]:

Cdeco
DS (β, γ ) = β log2(1 + γ (1 − β)). (40)

The output of a bank of MMSE filters observing y = Sb+n
(c.f. eq. (1)) is:

r = WT y = WTSb + WTn

= Gb + ν, (41)

where WT is defined as follows:

WT :=
(

STS + 1

γ
I
)−1

ST = ST
(

SST + 1

γ
I
)−1

. (42)

Note that, as well known, MMSE and decorrelator coincide
as γ → ∞. In DS-CDMA, for any fixed β > 0, it was shown
in [11] that:

Cmmse
DS (β, γ ) = β log2

(
1 + γ − 1

4
F(β, γ )

)
, (43)

where:

F(β, γ ) =
[√

1 + γ 	+ − √
1 + γ 	−

]2
,

being 	± = (1 ± √
β)2 as in eq. (11).

We can treat both decorrelator and MMSE as special cases
of the linear operator

WT(α) := (STS + α I)−1 ST = ST(SST + α I)−1,

for α → 0+ and α = 1/γ , respectively. Similarly as eq. (41),
one has:
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Fig. 9. Spectral efficiency Cmmse vs. mutual information Immse and Cdeco vs. Ideco (b/s/Hz) as a function of Eb/N0 (dB) with load β = 0.9. Mutual
information of TH-CDMA with Ns = 1 (blue dashed line) vs. spectral efficiency of DS-CDMA (red solid lines), for decorrelator and MMSE receivers, is
shown. It is also shown orthogonal access (gray line) for reference.

r(α) = WT(α)y = G(α)b + ν(α), (44)

where dependence on α is now made explicit, and the output
for user 1 is:

r1 = G11b1 +
K∑

k=2

G1kbk + ν1. (45)

For Ns = 1, a closed form expression for the generic element
of G(α) is derived in Appendix I, and reads as:

Gij (α) = ρi j · 1

α + vi
, (46)

where vi is:

vi =
K∑

k=1

�{ρik 
= 0} =
K∑

k=1

|ρik | =
K∑

k=1

|ρki |. (47)

Denote with J j the following set: J j := {k ∈ [1 : K ] :
ρ j k 
= 0}. Hence, v j = |J j | is the cardinality of J j .
Denote with J ′

j := J j\{ j}. Since j ∈ J j , one has
v ′

j := |J ′
j | = v j − 1. We can rewrite eq. (45) as follows:

r1 = 1

α + v1
b1 + 1

α + v1

∑

k∈J ′
1

ρ1kbk + ν1. (48)

Note that ρ1kbk for ρ1k 
= 0 is distributed as bk , and ν1
given v1 is complex Gaussian with zero mean and conditional
variance:

Var[ν1
∣
∣v1] = N0 · 1

(α + v1)2 .

Since the distribution of both r1 conditioned on S and r1
conditioned on b1 and S is complex Gaussian, I (b1; r1|S)

expressed in bits per user per channel use is:

I (b1; r1|S) = I (b1; r1|v ′
1)

= E

[
log2

(

1 + E/(α + v ′
1)

2

(v ′
1E + N0)/(α + v ′

1)
2

)]

= E

[
log2

(
1 + γ

v ′
1γ + 1

)]
,

Since v ′
1 ∼ Binomial(K − 1, 1/N), in the LSL one has

v ′
1

d−→ Poisson(β). Therefore, we proved the following:
Theorem 6: Suppose that S ∈ R

N×βN is a time-hopping
matrix with Ns = 1, and that the receiver is a bank of either
decorrelators (α = 0) or MMSE filters (α = 1/γ ) followed by
independent decoders, each knowing S. Assuming Gaussian
inputs, mutual information Iα

TH (b/s/Hz) is given by:

Iα
TH(β, γ ) := β I (b1; r1|S)

= β
∑

k�0

βke−β

k! log2

(
1 + γ

kγ + 1

)
. (49)

Since eq. (49) does not depend on α and is equal to eq. (28)
for SUMF, one explicitly has Iα

TH = I sumf
TH = I mmse

TH = I deco
TH .

With minor modifications of the above argument, it is
possible to show that a similar result does hold for any
linear receiver WT(α), α > 0, under the assumption Ns = 1.
Therefore, results for SUMF can be extended verbatim to
both decorrelator and MMSE receivers, when Ns = 1. This
result suggests a striking difference with respect to DS, where
spectral efficiency depends on the adopted linear receiver:
In TH with Ns = 1, SUMF, decorrelator and MMSE all
result in the same mutual information.
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Fig. 10. Spectral efficiency Cmmse
DS and Cdeco

DS vs. mutual information

Isumf
TH (b/s/Hz) as a function of β for DS-CDMA (red solid lines) and

TH-CDMA (blue dashed line), when Eb/N0 = 10 dB. Orthogonal access
is reported for reference (gray solid line).

In order to compare DS and TH for decorrelator and
MMSE, we separate the analysis for systems with β < 1 and
β > 1, referred to as underloaded and overloaded systems,
respectively.

1) Underloaded System (β < 1): Decorrelation in DS
allows to achieve the maximum high-SNR slope, Sdeco∞,DS = β,
that is equal to that of orthogonal multiple access. On the
contrary, TH does not fully exploit the capabilities of CDMA
in the high-SNR regime, since S deco∞,TH = S sumf∞,TH = βe−β � β.
This behavior follows directly from cross-correlation
properties of signature sequences of DS vs. TH: In DS,
the almost sure linear independence of signature sequences,
that holds for any β ∈ (0, 1), makes R = STS almost sure
invertible, and thus interference can be mostly removed, which
is not the case of TH (c.f. Fig. 3 and Theorem 2). However,
the optimal high-SNR slope in DS comes at the expense of
a minimum Eb/N0 equal to (ln 2)/(1 − β), that can be much
larger than that achieved by TH, namely ln 2; in particular,
as β → 1−, the minimum energy-per-bit for DS with
decorrelator grows without bound. Therefore, decorrelation
with DS should to be considered in a very low load, high-SNR
regime only: in this region, it outperforms TH. It can be
shown, by comparing eqs. (43) and (40), that in DS spectral
efficiency of MMSE is always larger than that of decorrelator.
In particular, it achieves a minimum energy-per-bit equal to
ln 2, which is optimal, and also an optimal high-SNR slope.

2) Overloaded System (β > 1): Spectral efficiency of TH
and DS with MMSE is similar in the low-SNR regime, with
same minimum energy-per-bit and wideband slope. At high-
SNR, mutual information of TH is unbounded, while spectral
efficiency of DS is bounded, as in the SUMF case. In particu-
lar, while the high-SNR slope of TH is equal to S sumf∞,TH(β) =
βe−β for any β, the high-SNR slope of DS with MMSE is:

Smmse∞,DS (β) = β �{β ∈ [0, 1)} + 1

2
�{β = 1} + 0 · �{β > 1},

Fig. 11. Spectral efficiency Cmmse
DS vs. mutual information Isumf

TH (b/s/Hz) as
a function of β for DS-CDMA (red solid lines) and TH-CDMA (blue dashed
lines), for values of ηdB := Eb/N0 ∈ {10, 30, 50} dB. Asymptotic value of
Cmmse

DS for ηdB → ∞ is also shown for reference (thin solid black line).

which implies that, as Eb/N0 → ∞, Cmmse
DS is infinite

for β � 1, while it is finite for β > 1, and equal to
(c.f. eq. (43)) [11]:

lim
γ→∞ Cmmse

DS (β, γ ) = β log2
β

β − 1
. (50)

By comparing this result with eq. (29), that refers to SUMF,
one also notes that the two limits are different, although as
β → ∞ both tend to 1/ ln 2.

Figure 9 shows spectral efficiency Cmmse and Cdeco vs.
mutual information Immse and Ideco (b/s/Hz) as a function of
Eb/N0 (dB) for DS (red solid lines) and TH (blue dashed line),
when β = 0.9. Orthogonal access is also shown for reference
(gray solid line). The choice of β = 0.9 represents a scenario
with high interference where eq. (40) is still valid, and DS
with decorrelation still comparable. MMSE and decorrelator
receivers achieve a same mutual information for TH: in the
low-SNR regime, Immse

TH = Ideco
TH and Cmmse

DS have similar
behavior, that departs as Eb/N0 increases. Decorrelator with
DS achieves the maximum high-SNR slope, which is equal
to that of the orthogonal access: note that the two curves on
figure are, in fact, translated. This is not the case for TH,
for S is not full rank with high probability, and the high-
SNR slope is indeed lower. It is shown on figure that DS with
MMSE outperforms linear receivers with TH: this is due to
the particular choice of β. Figure 10 shows spectral efficiency
Cmmse

DS and Cdeco
DS (red solid lines) vs. mutual information

Isumf
TH = Ideco

TH = Immse
TH (blue dashed line) as a function of β,

when Eb/N0 = 10 dB. This figure shows that MMSE with
DS is outperformed by TH for large β: in particular, there
exists a minimum value of β, say β̄, in general depending on
Eb/N0, beyond which the mutual information of TH is higher
than the spectral efficiency of DS, although both tending to a
same limit as β → ∞, that is, 1/ ln 2. While it is difficult
to study β̄ as a function of Eb/N0, the above discussion
on the high-SNR slope of DS suggest that β = 1 marks a
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Fig. 12. Spectral efficiency C vs. mutual information I (b/s/Hz) as a function of Eb/N0 (dB) with load β = 1. Optimum vs. linear receivers are shown.
Top curve shows Copt

DS for optimum decoding in DS-CDMA (red solid line). Bottom curve shows C for SUMF, DS-CDMA (red solid line) coinciding with

TH-CDMA when Ns goes to infinity proportionally to N , i.e., limN→∞ Ns/N = α ∈ (0, 1) (red solid line). In between these two extremes: Copt
TH curve for

optimum decoding, TH-CDMA, Ns = 2, simulated values (dotted blue line); Copt
TH curve for optimum TH-CDMA, Ns = 1 (blue solid line); ITH curve for

linear receivers, TH-CDMA, Ns = 1 (blue large-dashed line); Isumf
TH� curve for SUMF, TH-CDMA�, Ns = 1 and Ns = 2 (blue small-dashed line).

transition in DS behavior as Eb/N0 → ∞. Figure 11 shows
Cmmse

DS (red solid lines) and Isumf
TH = Ideco

TH = Immse
TH (blue

dashed line) as a function of β, for different values of ηdB =
10 log10(Eb/N0). Figure shows that, as ηdB increases, spectral
efficiency of DS grows linearly for β � 1, and at about β = 1
quickly drops towards the limit value given by eq. (50), while
spectral efficiency of TH remains smooth for any load in the
neighborhood of β = 1 and increases monotonically with ηdB.

D. Synopsis of the TH-CDMA Case

Figure 12 shows spectral efficiency C or mutual
information I (b/s/Hz) vs. Eb/N0 (dB) for the two extreme
cases of optimum decoding and SUMF receivers, when β = 1.
Curves derived from closed form expressions of spectral
efficiency are shown for optimum decoding when Ns = 1
(top blue solid line), and SUMF when Ns = αN as N → ∞
and α ∈ (0, 1) (bottom blue solid line). Curves derived from
closed form expressions of mutual information assuming
Gaussian inputs are shown for SUMF, TH-CDMA (blue
dashed line, see label on figure) and SUMF, TH-CDMA�

(blue dashed line, see label on figure), when Ns = 1 and
Ns = 2. Finding closed form expressions of spectral efficiency

of optimum decoding with generic Ns > 1 finite remains
an open problem. Simulations provide, however, insights
into the behavior of spectral efficiency for this particular
case, as shown by Copt

TH with Ns = 2 (blue dotted line). TH
behavior is delimited by DS curves, with optimum decoding
vs. SUMF (top and bottom red lines). Both upper and lower
curves are approached by TH as Ns increases; in particular,
we showed that the lower curve describes, in fact, TH when
Ns = αN , α ∈ (0, 1), as N → ∞. In between these two
extremes lie TH curves with optimum vs. linear receivers.
In particular, for Ns = 1 (maximum energy concentration),
mutual information of a receiver as simple as SUMF is not
bounded, and also close to optimum decoding with Ns = 1.
Furthermore, a lack of knowledge in cross-correlations of
spreading codes provokes a drop of performance that is,
however, not sufficient to degrade mutual information to DS
spectral efficiency, with any finite Ns.

Figure 13 compares either spectral efficiency C or mutual
information I (b/s/Hz), as a function of β, for DS and TH,
when Eb/N0 = 10 dB. Both DS and TH have similar
behaviors when β � 1, for linear and optimum receivers.
Irrespective of β, spectral efficiency of DS with optimum
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Fig. 13. Spectral efficiency C or mutual information I (b/s/Hz) as a function
of β for DS and TH, when Eb/N0 = 10 dB, with optimum and SUMF
receivers. Orthogonal access and DS with MMSE receiver are reported for
reference.

decoding is larger than that achieved by TH, the gap being
almost closed when Ns > 1 finite. Conversely, among linear
receivers and access schemes, it is shown that DS with SUMF
has the lowest spectral efficiency, which is equal to that of
TH when the number of pulses is asymptotically a nonzero
fraction of the number of chips. The largest spectral efficiency
in DS is obtained with MMSE, which is greater than the
mutual information of TH when load is lower than a threshold
β̄(Eb/N0), depending in general on Eb/N0. At higher load,
mutual information of TH is larger than spectral efficiency
of DS. This analysis is intrinsically conservative, since
spectral efficiency of TH will be, in general, larger than or
equal to the mutual information obtained assuming Gaussian
inputs. Therefore, one should expect that the gap in spectral
efficiency between DS and TH with linear receivers is smaller
and larger than that showed on figure when β < β̄ and β > β̄,
respectively.

IV. CONCLUSIONS

Verdú and Shamai showed in [11] that optimum
decoding provides a substantial gain over linear decoding in
DS-CDMA, with random spreading. In particular, a bank
of single-user matched filters followed by independent
decoders is bounded in spectral efficiency at high-SNR, and
linear multiuser detectors are needed in order to recover a
nonzero spectral efficiency high-SNR slope. This behavior
is partly due to the “even” use of degrees of freedom—
coinciding in our setting with chips—that is intrisic of
DS-CDMA [4].

The object of this paper was to analyze TH-CDMA
with random hopping, and compare its behavior against
DS-CDMA; we interpreted time-hopping in the general
framework developed in [11] and [12]. The present analysis
allowed comparison of TH vs. DS with same energy
per symbol and same bandwidth constraints, and, therefore,
showed the effect of the energy “concentration,” that is typical

of TH. The degree of “unevenness” in TH-CDMA is directly
related to the number of pulses Ns representing each symbol.
At one extreme, one has maximum “unevenness,” where all
energy is concentrated in one pulse (Ns = 1), while the other
extreme corresponds to maximum “evenness,” Ns = N , where
TH coincides with DS. Particular emphasis has been put on
the archetypal case of “unevennes,” that is Ns = 1, and partial
results showing the general behavior when Ns > 1 have been
derived.

A first result of our analysis was to derive a closed
form expression for spectral efficiency of TH-CDMA with
optimum decoding when Ns = 1, showing that, in this case,
DS-CDMA outperforms TH-CDMA, in particular in the
high-SNR regime. Same wideband behavior, but lower high-
SNR slope, was observed for TH-CDMA vs. DS-CDMA,
that is min{1, β} = S∞,DS > S∞,TH = 1 − e−β . A closed
form expression for generic Ns remains an open problem;
results based on simulations suggested, however, that the
spectral efficiency loss at high-SNR may be considerably
reduced while maintaining the number of pulses finite, and
we provided evidences that the gap is reduced to a very
small value with as low as two pulses per symbol (Ns = 2).
This result indicates that the spectral efficiency gap may be
substantially reduced while only using a fraction Ns/N of
degrees of freedom per user, that asymptotically vanishes as
N grows.

A different behavior of TH-CDMA with respect to
DS-CDMA was observed with linear receivers. Contrarily
to DS, spectral efficiency of SUMF for TH with Ns = 1
was unbounded. As suggested, this asymptotic behavior
may be traced back to the non-Gaussian distribution of the
interference-plus-noise variable observed by each independent
single-user decoder, that, in turn, depends on cross-correlation
properties of spreading sequences. The same high-SNR slope
S sumf∞,TH = βe−β was achieved by TH irrespectively of the
knowledge that each single-user decoder had about spreading
sequences of all other users. It was interesting to note that
the maximum slope for TH, providing a hint on greatest
energy efficiency, was reached when the number of users K
was equal to the number of chips N , i.e., β = 1, leading to
S sumf∞,TH = 1/e ≈ 0.367879. On the contrary, for Ns = αN ,
α ∈ (0, 1), same spectral efficiency as DS-CDMA (α = 1)
was obtained irrespectively of α for N → ∞.

The bounded nature of spectral efficiency with a SUMF
bank in DS-CDMA is overcome, as well known, by
using more complex linear receivers, that also account for
interference, such as MMSE and decorrelator. Conversely,
we showed that, in TH-CDMA, mutual information assuming
Gaussian inputs has the same expression, irrespective of the
linear receiver used, due to the peculiar structure of TH
spreading sequences. TH sequences are indeed “more” likely
to be linearly dependent than DS ones, in agreement with the
intuition based on the cardinality of binary DS vs. TH codes,
that is 2N vs. 2N . This lack of independence led to the
impossibility of removing interference, which is instead almost
surely feasible for DS, e.g. with either decorrelator or MMSE
receivers, as long as the load β < 1. Therefore, in a low
load, high-SNR scenario, DS outperforms TH. The opposite
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is true when β > 1. In fact, while spectral efficiency in DS
with MMSE rapidly drops, in particular with large Eb/N0,
as soon as β becomes larger than one, mutual information
of TH decays softly when one keeps overloading the system,
and tends to the same MMSE DS limit. The absence of a
spectral efficiency “transition” in the neighborhood of the
unit load, that is typical of DS, allows TH to outperform
DS with any load larger than β = 1 for sufficiently
high Eb/N0.

Beyond the natural extension of the present work to
channels with fading, where the effect of an “uneven” use
of degrees of freedom typical of TH should be investigated,
we do stress that, from the single-user perspective, TH is a
particular instance of impulsive signal. As such, the present
theoretical setting, if appropriately adapted to asynchronous
links, may serve as a basis for refining the understanding of
the limits of impulsive communications.

APPENDIX A
PROOF OF THEOREM 1

This Appendix is split in two parts. In the first part, we will
find average moments E [mL ] for finite dimensional systems,
where both K and N are finite. In the second part, we will
prove that Var [mL] → 0, hence showing convergence in
probability of mL to the Lth moment of a Poisson distribution
in the LSL.

Part 1 (Average Moments of TH-CDMA Matrices With
Ns = 1): Denote πk ∈ [N] the nonzero element of the kth
column sk of S. Then:

SST =
K∑

k=1

sk sT
k =

K∑

k=1

eπk eT
πk

,

where [ei ] j = δi j , being δi j the Kronecker symbol. Hence,
SST is diagonal, and the nth element on the diagonal, denoted
νnN := [SST]nn , is equal to:

νnN = |{k ∈ [K ] : πk = n}| ∈ [K ].
The Lth moment of the ESD is:

mL = 1

N
tr(SST)L = 1

N

∑

i�N

[SST]L
ii = 1

N

∑

i�N

νL
i N . (51)

Now note that (νi N )N
i=1 is distributed according to

a multinomial distribution with β N trials and N
equally probable categories, that is, (ν1N , . . . , νN N ) ∼

Multinomial(β N, N−11N ). The marginal distribution of each
νi N is Binomial(β N, N−1), thus:

E [mL] = 1

N

∑

i�N

E [νL
i N ]

=
L∑

	=1

{
L

	

}
K !

(K − 	)!
1

N	
. (52)

In the LSL, one has:

E [mL] →
L∑

	=1

{
L

	

}
β	, (53)

that is exactly the Bell polynomial of order L, that provides
the Lth moment of a Poisson distribution with mean β.

Remark 3: Interestingly, the Lth moment of the
Marc̆enko-Pastur law (c.f. eq. (11)) can be expressed as
follows (see e.g. [27], [31]):

mMP
L =

L∑

	=1

N	β
	, N	 = 1

L

(
L

	

) (
L

	 − 1

)
, (54)

where N	 is the number of non-crossing partitions of the
set [L] into 	 blocks, also known as Narayana number.
As a remark, the sum of Narayana numbers over [L]
is the Lth Catalan number, that has many combinatorial
interpretations (see e.g. [32], [33]).

Also note that eq. (53) is formally similar to eq. (54), with
Stirling number of the second kind in place of Narayana
numbers: While the latter enumerate non-crossing partitions
only, the former enumerate all partitions, both crossing and
non-crossing ones.

Part 2 (V ar[mL] → 0): Exploiting the diagonal structure
of SST yields the following expression for the second
noncentral moment:

E [m2
L] = 1

N2

∑

i�N

∑

j�N

E [νL
i N νL

j N ] (55)

= 1

N
E [ν2L

1N ] +
(

1 − 1

N

)
E [νL

1N νL
2N ]. (56)

The term E [ν2L
1N ] = O(1), therefore N−1

E [ν2L
1N ] contributes

O(N−1) to the sum. The term E [νL
1N νL

2N ] can be handled as
follows. Since the probability generating function (PGF) of the
multinomial distribution describing νN = (ν1N , . . . , νN N ) is:

GνN (z) =
(

N−1
∑

m�N

zm

)K
, (57)

it follows that the PGF of the pair (ν1N , ν2N ) is:

Gν1N ν2N (z1, z2) =
(

N−1
(

z1 + z2 + (N − 2)
))K

= eβ(z1−1)eβ(z2−1) + O(N−1), (58)

showing that νi N is asymptotically independent on ν j N ,
i 
= j , and distributed as a Poisson distribution with mean β.
Therefore:

Var [mL] = E [m2
L ] − E [mL]2 = O(N−1). (59)

APPENDIX B
VERIFYING THE CARLEMAN CONDITION

Lemma 1: The sequence of moments (m̄L)L�0 verifies the
Carleman condition, i.e.,

∑
k�1 m̄−1/2k

2k = ∞.
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Proof: We upper bound m̄2k as follows:

m̄2k
(a)
<

2k∑

	=1

{
2k

	

}
β	

(b)
�

2k−1∑

	=1

1

2

(
2k

	

)
	2k−	β	 + β2k

(c)
� 1

2
(2k − 1)2k−1

2k−1∑

	=1

(
2k

	

)
β	 + β2k

(d)
<

1

2
(2k − 1)2k−1(1 + β)2k + β2k

< (1 + β)2k(1 + (2k)2k)

where: (a) follows from the elementary inequality
(2k)!/(2k − 	)! = (2k)(2k − 1) · · · (2k − 	 + 1) < (2k)	;
(b) from the inequality

{n
	

}
� U(n, 	) := 1

2

(n
	

)
	n−	;

(c) from upper bounding the term 	2k−	 with (2k − 1)2k−1;
(d) from extending the summation over 	 = 0, . . . , 2k.
From elementary relations between p-norms, one has
(1 + (2k)2k)1/2k = ‖(1, 2k)‖2k � ‖(1, 2k)‖1 = 1 + 2k, thus
m̄1/2k

2k < (1 + β)(1 + 2k), and therefore:
∑

k�1

m̄−1/2k
2k >

1

1 + β

∑

k�1

1

1 + 2k
= ∞,

which verifies the Carleman condition. �

APPENDIX C
PROOF OF Copt

N (γ )
p−→ Copt(γ )

In this Appendix we show that P(|Copt
N (γ ) − Copt(γ )| >

ε) → 0, for all ε > 0. It is sufficient to prove that

Var [AN ] → 0, AN =
∫

h(x)dFSST

N (x), (60)

when h(x) is a concave, monotonically increasing function
with sufficiently slow growth. (The case of interest is that of
h(x) with logarithmic growth.)

We use same notations as in Appendix A. Define the
random measure:

μN (x) = 1

N

N∑

i=1

�{νi N = x}. (61)

The ESD FSST

N (x) is thus:

FSST

N (x) = μN ([0, x]) =
∑

k�x

μN (k), (62)

hence AN in (60) is

AN =
∫

h(x)dFSST

N (x) =
∑

x�N

h(x)μN (x). (63)

The first moment of AN is:

E [AN ] =
∑

x�N

h(x) E [μN (x)] (64)

=
∑

x�N

h(x)
1

N

∑

i�N

E [�{νi N = x}] (65)

=
∑

x�N

h(x)P(ν1N = x). (66)

In order to compute the second moment of AN it is useful to
preliminarily note that:
∑

i�N

∑

j�N

E [�{νi N = x}�{ν j N = x ′}] = NP(ν1N = x)δx x ′

+ N(N − 1)P({ν1N = x} ∩ {ν2N = x ′}). (67)

For brevity, we denote p1N (x) = P(ν1N = x) and
p2N (x, x ′) = P({ν1N = x} ∩ {ν2N = x ′}). Hence, the second
moment of AN is:

E [A2
N ] =

∑

x�N

∑

x ′�N

h(x)h(x ′) E [μN (x)μN (x ′)]

=
∑

x�N

∑

x ′�N

h(x)h(x ′) 1

N2

×
∑

i�N

∑

j�N

E [�{νi N = x}�{ν j N = x ′}]

=
∑

x�N

∑

x ′�N

h(x)h(x ′)
{

1

N
p1N (x)δx x ′

+
(

1 − 1

N

)
p2N (x, x ′)

}
.

Therefore, the LHS of (60) is

Var [AN ] =
∑

x�N

∑

x ′�N

h(x)h(x ′)
{

1

N
p1N (x)δx x ′

+
(

1 − 1

N

)
p2N (x, x ′) − p1N (x)p1N (x ′)

}

� h(N)2
∑

x�N

∑

x ′�N

1

N
p1N (x)δx x ′

+
(

1 − 1

N

)
p2N (x, x ′) − p1N (x)p1N (x ′)

= h(N)2
∑

x�N

∑

x ′�N

1

N
p1N (x)δx x ′ − p1N (x)p1N(x ′)

+
(

1 − 1

N

)[
p1N (x)p1N (x ′) + O

( 1

N

)]

= h(N)2 O
( 1

N

)
.

APPENDIX D
ASYMPTOTICS IN THE WIDEBAND REGIME FOR Ns > 1

A. Minimum Energy-Per-Bit

Denote λ̄N the eigenvalues empirical average, that is,
λ̄N := 1

N

∑N
i=1 λi . Since

λ̄N = 1

N

N∑

i=1

λi = 1

N
tr(SST) = 1

N
tr(STS)

= 1

N

K∑

i=1

sT
i si = 1

N
· K = β

surely, it results λ̄N = E [λ] = β, hence the minimum
energy-per-bit is:

ηmin = β

E [λ]
ln 2 = ln 2.
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B. Wideband Slope S0

Denote the empirical second moment of eigenvalues
with SN ,

SN := 1

N

N∑

i=1

λ2
i ,

and let Rij = [STS]i j . Since:

1

N

N∑

i=1

λ2
i = 1

N
tr(SST)2 = 1

N
tr(STS)2

= 1

N

K∑

i=1

K∑

j=1

R2
i j = β + 1

N

K∑

i=1

K∑

j=1
j 
=i

R2
i j , (68)

one has:

E [SN ] = β + 1

N
K (K − 1) E [R2

12].
Denote

ρ := R12 = sT
1s2 =

Ns∑

m=1

sT
1m s2m =

Ns∑

m=1

ρm,

where sk = [sT
k1, . . . , sT

kNs
]T is an (Ns, Nh)-sequence (see

Definition 2) and ρm := sT
1m s2m . The moment generating

function (MGF) of ρ is:

Mρ(t) := E [etρ] = E [et (ρ1+···+ρNs )]
= E [etρ1]Ns =

(∫
etξμ(dξ)

)Ns

,

where:

μ = 1

2Nh
δ− 1

Ns
+

(
1 − 1

Nh

)
δ0 + 1

2Nh
δ 1

Ns
,

that is, explicitly,

Mρ(t) =
[(

1 − 1

Nh

)
+ 1

Nh
cosh

( t

Ns

)]Ns

. (69)

Hence E
[
ρ2

] = M ′′
ρ (0) = 1/N , and

E [SN ] = β + β
K − 1

N
→ β(1 + β).

It is shown below that Var [SN ] = O(1/N), that implies
SN

p−→β + β2. From eq. (68), one has:

E [S2
N ] = β2 + 2β

N
K

K −1

N
+ 1

N2

K∑

i=1

K∑

q=1

K∑

j=1
j 
=i

K∑

r=1
r 
=q

E [R2
i j R2

qr ]

= β2 + 2β

N
K

K − 1

N
+ 1

N2 K (K − 1)

×
{

E [ρ4] + (K (K − 1) − 1) E [ρ2]2
}

= β2 + 2β3 + β4 + O
( 1

N

)

hence Var[S2
N ] = O(1/N).

APPENDIX E
MUTUAL INFORMATION OF SUMF WHEN

SINGLE-USER DECODERS HAVE KNOWLEDGE

ON CROSS-CORRELATIONS

The SUMF channel for user 1, as given by eq. (24), is:

y1 = b1 +
K∑

k=2

ρ1kbk + n1.

Assuming Gaussian inputs, bi ∼ CN(0, E), the conditional
mutual information on {ρ12, . . . , ρ1K } expressed in bits per
channel use per user is:

I (y1; b1|ρ12, . . . , ρ1K ) = E

[
log2

(
1 + γ

1 + ςγ

)]
, (70)

where expectation is over {ρ12, . . . , ρ1K }, and ς := ∑K
k=2 ρ2

1k .
We find below the PDF of ς in the LSL.

From eq. (69), the characteristic function (CF) of the
generic RV ρ := ρ1k is:

ϕρ(t) := E [eitρ] =
[

1 − Ns

N

(
1 − cos

( t

Ns

))]Ns

=
Ns∑

m=0

(
Ns

m

)
(−1)m Nm

s

Nm

[
1 − cos

( t

Ns

)]m

= 1 − N2
s

N

[
1 − cos

( t

Ns

)]
+ O

( 1

N2

)
, (71)

and the CF of ς is:

ϕς (t) = E [eitς ] = E [eitρ2 ]K−1. (72)

The last expectation can be computed as:

E [eitρ2 ] = 1

2π

∫

R

dω ϕρ(ω)

∫

R

dx eit x2
e−iωx

= 1

2π

∫

R

dω ϕρ(ω)

√
i
π

t
e−i ω2

4t

= 1 + N2
s

N

[
eit/N2

s − 1
]

+ O
( 1

N2

)
,

hence, in the LSL, eq. (72) becomes:

ϕς (t) → eβN2
s (eit/N2

s −1),

which is the CF of a Poisson RV with measure:

μς =
∑

k�0

(β N2
s )k

k! e−βN2
s δk/N2

s
.

Therefore, from eq. (70), mutual information converges to:

I (y1; b1|ρ12, . . . , ρ1K )

−→
∑

k�0

(β N2
s )k

k! e−βN2
s log2

(
1 + γ

1 + k
N2

s
γ

)
.
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APPENDIX F
PROOF OF THEOREM 4

Consider the output of the SUMF of user 1, that is given
by eq. (24), divided by

√N0:

Y1 = b1 +
K∑

k=2

ρ1kbk + N1 = b1 + J1 + N1 = b1 + Z1,

where N1 ∼ CN(0, 1) and we assume bk ∼ CN(0, γ ). Since
I (Y1; b1) = h(Y1)−h(Z1), it is sufficient to find PY1 and PZ1 ,
both of which easily follow from PJ1 . From eq. (71), one can
write the CF of each term ρ1kbk as:

ϕρb(t) = E [ϕρ(bt)] = 1 − N2
s

N

(
1 − e

− γ

2N2
s

t2)
+ O

( 1

N2

)
,

and, therefore, the CF of J in the LSL is:

ϕJ (t) = ϕρb(t)
K−1 −→ exp

[
β N2

s

(
e
− γ

2N2
s

t2

− 1
)]

=
∑

k�0

(β N2
s )k

k! e−βN2
s e

− kγ

2N2
s

t2

,

which is the CF of:

PJ =
∑

k�0

(β N2
s )k

k! e−βN2
s CN(0, kγ /N2

s ).

Therefore, Z1 and Y1 are distributed as:

PZ =
∑

k�0

(β N2
s )k

k! e−βN2
s CN(0, 1 + kγ /N2

s ). (73)

and:

PY =
∑

k�0

(β N2
s )k

k! e−βN2
s CN(0, 1 + γ + kγ /N2

s ). (74)

APPENDIX G
PROOF OF EQ. (34)

The goal is to find the quantity Ssumf
∞,TH� := limγ↑∞ γ d I/dγ,

where I (nats/s/Hz) is given in Theorem 4. Assuming that a
limit does exist, we will upper and lower bound h(P) with
bounds having the same first derivative as γ → ∞. Here
P is a generic linear combination of Gaussian distributions
with weights wk � 0, as follows:

P :=
∑

k�0

wkCN(μk, σ
2
k ).

Upper Bound: Applying the elementary inequality
(x1 + x2) ln(x1 + x2) � x1 ln x1 + x2 ln x2 with x1 � 0 and
x2 � 0, properly generalized, to the differential entropy of P
yields:

h(P) � −
∫

C

dz
∑

k�0

wkCN(z; μk, σ
2
k ) ln

[
wkCN(z; μk, σ

2
k )

]

=
∑

k�0

−wk ln wk +
∑

k�0

wk ln(πeσ 2
k ) = hP(P) + hG(P),

where hP(P) is constant in γ.

Lower Bound: From Gibb’s inequality,

h(P) �
∑

k�0

wk log(πeσ 2
k ) =: hG(P). (75)

Bounds: From above bounds, it follows that
hG(P) � h(P) � hG(P) + hP(P), and since hP(P) is
constant in γ, one has:

lim
γ→∞ γ

dh(P)

dγ
= lim

γ→∞ γ
dhG(P)

dγ
, (76)

provided that the limit on the LHS does exist. Setting
wk := e−ββk/k! and P equal to either PY or PZ (c.f.
eqs. (32)-(33)) yields:

Ssumf
∞,TH� = β · lim

γ→∞ γ
d

dγ

{
hG(PY ) − hG(PZ )

}; (77)

by direct computations, it follows that:

dhG(PZ )

dγ
= 1 − e−β

γ
+ O

( 1

γ 2

)
, (78)

dhG(PY )

dγ
= 1

γ
+ O

( 1

γ 2

)
, (79)

hence Ssumf
∞,TH� = βe−β .

APPENDIX H
SPECTRAL EFFICIENCY OF SUMF FOR

Ns = αN , α ∈ (0, 1], AS N → ∞
In this appendix we will show that spectral efficiency

of the single-user SUMF channel, given by eq. (24), is
same as that of DS-CDMA for TH-CDMA with Ns = αN ,
α ∈ (0, 1], therefore generalizing a previous result of
Verdú and Shamai [11] to which we reduce when α = 1. The
result that follows extends the validity of the proof developed
in [11] to TH sequences with Ns = αN , α ∈ (0, 1]. The
reader is referred to [11] for a detailed exposition, while we
limit the below derivation to our contribution, which reduces
to verifying a Lindeberg-Feller condition for the interference
term:

lim
K→∞

K∑

k=2

E

[
ρ2

1kb2
k�{ρ2

1kb2
k > ξ}∣∣ρ1k

]
= 0, ∀ξ > 0,

that is equivalent to the following condition [11]:

lim
N→∞ E

[
Nρ2

12�{Nρ2
12 > h}

]
= 0, (80)

for some arbitrary h > 0. Since the MGF of ρ12 is given
by eq. (69), one has, in the LSL with Ns = αN and
Nh = N/Ns = 1/α, the following pointwise convergence of
the MGF of X := √

Nρ:

MX (t) =
[
1 + α

(
cosh

( t√
Nα

)
− 1

)]αN −→ e
1
2 t2

,

hence X
d−→N(0, 1). Therefore, as h → ∞, it results

E [X2
�{X2 > h}] → 0.
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APPENDIX I
CLOSED FORM EXPRESSION OF EQ. (44) FOR A

GENERAL CLASS OF LINEAR RECEIVERS

The discrete synchronous multiple-access channel
considered is (c.f. eq. (1)):

y = Sb + n.

The output of a generic linear receiver WT is as follows:

r := WT y = WTSb + WTn

= Gb + ν, (81)

where G = WTS and ν ∼ CN(0,N0WTW). We consider the
following linear receiver structure parametrized by α and η:

WT = ST(ηSST + α I)−1; (82)

by setting η = 1, decorrelator and MMSE receivers are
obtained as special cases for α → 0 and α = 1/γ ,
respectively; by setting η = 0 and α 
= 0, one obtains SUMF.

By focusing on user 1, the output of channel of (81) can
be written as eq. (83), which is reported here for reference:

r1 = G11b1 +
K∑

k=2

G1kbk + ν1. (83)

As in the proof of Theorem 1, we say that s users are in
chip i when the i th diagonal element of SST is equal to s.
Since SST is diagonal, one can write:

[
(ηSST + α I)−1]

ii = 1

α + ηui
,

where ui is the number of users in chip i ; since si ∈ {±en}N
n=1,

one has si = (−1)ai eπi for some ai ∈ {0, 1} and
πi ∈ [N], and therefore ui can be formally expressed
as ui = |{k ∈ [K ] : πk = i}|. The generic element Gij in
eq. (83) is explicitly given by:

Gij = sT
i (ηSST + α I)−1s j

= (−1)ai eT
πi

(ηSST + α I)−1eπ j (−1)a j

= (−1)ai+a j δπi ,π j · 1

α + ηuπi

= ρi j · 1

α + ηvi
,

where we denoted by vi := uπi , that is also equal to the
number of spreading sequences equal to either si or −si , i.e.:

vi =
K∑

k=1

|ρik | =
K∑

k=1

|ρki |.

With similar computations, the generic element of the
conditional covariance matrix of the noise vector in eq. (81)
given {vi }, and, therefore, given S, is:

[Σν|S]i j = E [WTnn†W
∣∣S]i j = N0[WTW]i j

= N0ρi j · 1

(α + ηvi )2 .

ACKNOWLEDGMENT

The authors are grateful to two anonymous Reviewers and
the Editor for providing insightful suggestions and comments
that allowed to significantly improve the paper and refined
the understanding of the analyzed system models.

REFERENCES

[1] M.-G. Di Benedetto and G. Giancola, Understanding Ultra Wide Band
Radio Fundamentals. Englewood Cliffs, NJ, USA: Prentice-Hall, 2004.

[2] M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth time-hopping
spread-spectrum impulse radio for wireless multiple-access communi-
cations,” IEEE Trans. Commun., vol. 48, no. 4, pp. 679–689, Apr. 2000.

[3] M. Z. Win and R. A. Scholtz, “Impulse radio: How it works,” IEEE
Commun. Lett., vol. 2, no. 2, pp. 36–38, Feb. 1998.

[4] M. Médard and R. G. Gallager, “Bandwidth scaling for fading multipath
channels,” IEEE Trans. Inf. Theory, vol. 48, no. 4, pp. 840–852,
Apr. 2002.

[5] R. Gallager and M. Médard, “Bandwidth scaling for fading channels,”
in Proc. IEEE Int. Symp. Inf. Theory, Jun./Jul. 1997, p. 471.

[6] I. E. Telatar and D. N. C. Tse, “Capacity and mutual information of
wideband multipath fading channels,” IEEE Trans. Inf. Theory, vol. 46,
no. 4, pp. 1384–1400, Jul. 2000.

[7] D. Porrat, D. N. C. Tse, and S. Nacu, “Channel uncertainty in ultra-
wideband communication systems,” IEEE Trans. Inf. Theory, vol. 53,
no. 1, pp. 194–208, Jan. 2007.

[8] E. Biglieri, J. Proakis, and S. Shamai (Shitz), “Fading channels:
Information-theoretic and communications aspects,” IEEE Trans. Inf.
Theory, vol. 44, no. 6, pp. 2619–2692, Oct. 1998.

[9] A. M. Tulino, L. Li, and S. Verdú, “Spectral efficiency of multicarrier
CDMA,” IEEE Trans. Inf. Theory, vol. 51, no. 2, pp. 479–505,
Feb. 2005.

[10] J. G. Andrews et al., “What will 5G be?” IEEE J. Sel. Areas Commun.,
vol. 32, no. 6, pp. 1065–1082, Jun. 2014.

[11] S. Verdú and S. Shamai (Shitz), “Spectral efficiency of CDMA
with random spreading,” IEEE Trans. Inf. Theory, vol. 45, no. 2,
pp. 622–640, Mar. 1999.

[12] S. Shamai (Shitz) and S. Verdú, “The impact of frequency-flat fading
on the spectral efficiency of CDMA,” IEEE Trans. Inf. Theory, vol. 47,
no. 4, pp. 1302–1327, May 2001.

[13] D. N. C. Tse and S. V. Hanly, “Linear multiuser receivers: Effective
interference, effective bandwidth and user capacity,” IEEE Trans. Inf.
Theory, vol. 45, no. 2, pp. 641–657, Mar. 1999.

[14] D. N. C. Tse and O. Zeitouni, “Linear multiuser receivers in random
environments,” IEEE Trans. Inf. Theory, vol. 46, no. 1, pp. 171–188,
Jan. 2000.
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