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Abstract—When paired with traditional channel estimation
and detection, massive MIMO is severely affected by pilot
contamination. While sticking to the traditional structure of the
training phase, where orthogonal pilot sequences are reused in
different cells, we propose a group-blind detector that takes into
account the presence of pilot contamination. Our detector uses
the excess antennas to partially remove interference during the
data transmission phase. We derive asymptotic expressions for
the SINR gain and the achievable rate in the massive regime,
i.e., when the number of antennas tends to infinity while keeping
the number of users per cell fixed. Implementing the group-blind
detector requires an estimate of the aggregate out-of-cell channel
covariance. We propose a simple scheme, referred to as method of
silences, to obtain such estimate. Numerical results confirm our
analysis in practical scenarios, and show cases where the method
of silences achieves a large fraction of the promised SINR gain
over conventional detectors.

Index Terms—Multiuser MIMO, group-blind detection, large
antenna arrays, pilot contamination, interference suppression.

I. INTRODUCTION

MASSIVE MIMO and cell densification are two tech-
nologies promising to boost the rate per unit area in

future (5G) cellular networks: in the former, the number of
antennas at each base station (BS) is increased; in the latter, the
number of BSs is increased [2]–[5]. In both cases, interference
may limit the achievable rate as the total number of antennas
grows [6]–[10]. In massive MIMO, the rate is bounded by
the inability of the BS to acquire accurate channel estimation
during the training phase [11]–[13]. This is due to the fact that
the number of orthogonal pilots available for training is limited
by the coherence time of the channel: for typical values of the
coherence time, it is not possible to allocate orthogonal pilots
to all users in the network but just to users within each cell.
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Therefore, the same set of pilots has to be reused in different
cells, which causes a channel estimation impairment known as
pilot contamination [11]. In this article, we design a detector
for the uplink of massive MIMO that reduces the detrimental
effect of pilot contamination to increase the transmission rate.

A. Background and Motivation

In massive MIMO, a multitude of small and individually
controlled antennas performs multiplexing and demultiplexing
for all active users. Adding more antennas helps to reduce
radiated power, simplify the signal processing operations, and
meet the ever-increasing wireless data demand [14]–[16]. In
fact, under accurate channel state information (CSI), fifty-fold
or greater spectral efficiency improvements are envisioned over
the current (4G) technology [17]–[20]. However, in practice,
the training phase of large-scale antenna systems suffers from
pilot contamination, which may in turn jeopardize the achiev-
able rate during the data transmission phase [21], [22]. This
is the case, in particular, when traditional receivers are used
as though the CSI were perfect [23]–[27], which incurs in a
possible rate loss. It is of critical importance to compensate for
the incurred loss. Such compensation can be partly achieved
by exploiting the excess dimensions in the signal space that are
made available by the presence of a large number of antennas.
The effect of imperfect channel estimation on wireless systems
employing multiple antennas is characterized in [28]–[35].

In order to mitigate pilot contamination through a modified
channel estimation phase, a non-linear iterative algorithm
that jointly estimates channels and transmitted symbols was
proposed in [36], obtaining an improvement in terms of
symbol error probability with respect to linear algorithms. A
step towards understanding the fundamental limits of massive
MIMO was recently made in [37]–[39], showing that pilot
contamination can be removed if the power received from in-
cell users is larger than the one received from out-of-cell users.
However, this assumption requires both power control and a
regular cell geometry, and it may not hold in full generality
[40]. The irregular topology of current cellular networks calls
for new multiuser detectors to mitigate the effect of pilot
contamination.

In this paper, we focus on the uplink rate of massive
MIMO systems. We propose a detector that takes into account
pilot contamination. The uplink is a limiting factor in mobile
networks, in particular because of the poor link budget [41],
[42]. The problem is exacerbated with the ever increasing
traffic from terminals to base stations, especially driven by
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cloud storage and social networking applications as well as
the number of connected devices [43], [44]. Therefore, uplink
improvements were pursued during the evolution of LTE [45].
Novel design and performance analysis for the uplink have
been receiving considerable attention in the last few years [22],
[46]–[50]. The proposed detector is compatible with existing
downlink schemes as well as different receiver designs that aim
at providing better channel estimations. Our detector tries to
reduce the effect of imperfect estimation due to contamination
once the latter is present.

B. Approach and Contributions

In this paper, we design and analyze a group-blind detector
for the uplink of massive MIMO in the presence of pilot
contamination. The proposed design does not require power
control or regular cell tessellation. It generalizes group-blind
detection, introduced in the context of CDMA [51]–[54], to
the case of imperfect channel knowledge. For the practical
implementation of the group-blind detector, we propose a
modified structure of the data transmission phase based on
blanking. In particular, the blanking technique provides a
method to estimate a second-order channel statistics needed
to implement the detector without requiring any cooperation
among cells. In this paper, we develop a framework that allows
to use group-blind detection in the uplink of cellular networks
affected by pilot contamination, and derive a group-blind
detector that is shown to maximize the SINR at the BS within a
class of group-blind detectors. We discuss also implementation
issues, and present analytical and numerical results of interest
in practical scenarios. Our main contributions are summarized
as follows.
• We derive a group-blind detector that accounts for im-

perfect channel knowledge of in-cell users, which is
motivated by the presence of contamination in the uplink
of massive MIMO. The group-blind detector can be re-
garded as a generalization of traditional detectors, such as
matched filter (MF), MMSE, and regularized zero forcing
(RZF), which use the contaminated channel knowledge
as though it were perfect. Our approach exploits excess
dimensions in the signal space that are made available by
the presence of excess antennas, and partially regains the
loss due to general channel estimation impairments.

• We analyze asymptotic SINR gains achievable by the
group-blind detector with respect to traditional detectors
when contamination is due to the use of orthogonal pilot
sequences in different cells during the training phase.
We find that the group-blind detector provides an SINR
gain larger than unity even in a worst case propagation
scenario. Numerical results validate our analytical deriva-
tions by exhibiting fast convergence towards asymptotic
limits, and show that the gain achieved by the proposed
detector is significant in scenarios of practical interest.

• We propose a practical implementation of the detector,
which requires an estimate of the aggregate out-of-cell
channel covariance. To obtain such estimate, we suggest
a simple scheme, referred to as method of silences, based
on a blanking technique that resembles the Almost Blank

Subframes feature of LTE R12 [55]. In our scheme, users
within each cell remain silent for a small subset of data
symbols, pseudo-randomly and independently selected by
each BS, thus allowing all BSs to estimate the aggregate
instantaneous out-of-cell channel covariance.

• We evaluate the performance of the proposed group-blind
detector when it is implemented jointly with the method
of silences. Numerical results show that in some practical
scenarios, the simple method of silences is sufficient to
achieve a large fraction of the promised SINR gain, and
a net ergodic rate significantly higher than that achieved
by conventional receivers.

The rest of the paper is organized as follows. The system
model is presented in Section II. Section III contains the
derivation of the group-blind detector, and Section IV dis-
cusses implementation details. Section V presents asymptotic
analytical results, while numerical results are provided in
Section VI. The paper is concluded in Section VII.

C. Notations

Throughout the paper, n, K, and L stand for the number
of antennas at each BS, the number of users in each cell,
and the number of cells in the network, respectively. The
massive regime corresponds to n → ∞ while keeping K
and L finite. Given two sequences (xn)n>0 and (yn)n>0 of
random variables (RVs), almost sure (a.s.) convergence of xn
to yn is denoted xn

a.s.−−→ yn. Asymptotic equivalence of two
sequences, denoted xn � yn, is defined by xn − yn

a.s.−−→ 0.
We denote δij the Kronecker symbol (δij = 1 if i = j,
and δij = 0 otherwise), and 1P the indicator function of
the statement P (1P = 1 when P is true, and 1P = 0
otherwise). Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors and
matrices are denoted by bold lowercase and uppercase letters,
respectively. For example, a random variable and its realization
are denoted by x and x; a random vector and its realization are
denoted by x and x; a random matrix and its realization are
denoted by X and X; a random set is denoted by X. Direct
sum of subspaces is denoted by ⊕. Given a vector v, the
transpose and hermitian transpose are denoted by vT and v†,
respectively. We denote diag(a1, . . . , an) the diagonal matrix
with elements on the main diagonal equal to a1, . . . , an. The
subspace spanned by set of vectors {v1, . . . ,vn} is denoted
by range{v1, . . . ,vn}. With a slight abuse of notation, we
denote range{A} the subspace spanned by the columns of
matrix A, and range{A1,A2, . . . ,An} the subspace spanned
by the columns of matrix [A1 A2 · · · An].

II. SYSTEM MODEL

A. Received Signal

Consider the uplink of a noncooperative multicellular net-
work with L cells sharing the same time-frequency resource
blocks. Each cell is equipped with one BS having n antennas.
For the sake of simplicity, we assume that each cell includes
K single-antenna users. Throughout the paper, the reference
cell is referred to as cell 1, and interfering cells are labeled
with indices l ∈ {2, 3, . . . , L}. Users in the reference cell and
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in other cells will be referred to as in-cell users and out-of-
cell users, respectively. The signal received by the BS of the
reference cell (reference BS) during symbol period m is:

y(m) =

L∑
l=1

K∑
k=1

hlk
√
βlk xlk(m) + n(m), (1)

where: y(m) ∈ Cn; hlk = [hlk1, hlk2, . . . , hlkn]T ∈ Cn is the
channel vector between user k in cell l and the BS of the
reference cell, with hlkr being the channel coefficient with
respect to BS antenna r; βlk > 0 captures the effect of pathloss
and shadowing for user k in cell l, and is assumed constant
within each coherence time; xlk(m) is the symbol transmitted
by user k in cell l; n(m) ∈ Cn is the additive white Gaussian
noise (AWGN) vector. We assume hlkr ∼ CN(0, 1), and:

E{n(m)n(m′)† } = Iδmm′ , (2)
E{hlkh†l′k′ } = Iδll′δkk′ , (3)

E{ xlk(m)xl′k′(m
′)∗ } = Pδll′δkk′δmm′ , (4)

where P is the transmitted power, which is the same
for all users. Note that model (1) can capture different
reuse factors by choosing appropriate values of βlk and
L. Denoting Hl := [hl1,hl2, . . . ,hlK ] ∈ Cn×K , Rl :=

diag(βl1, βl2, . . . , βlK), Gl := HlR
1/2
l , and xl(m) =

[xl1(m), xl2(m), . . . , xlK(m)]T∈ CK×1 yields:

y =

L∑
l=1

HlR
1/2
l xl + n =

L∑
l=1

Glxl + n, (5)

where dependence on the symbol period m is made implicit.

B. Channel Estimation

We consider channel estimation based on orthogonal train-
ing sequences (pilots) reused in each interfering cell [11], [22],
[27]. Users within each cell are assigned to different training
sequences drawn from a set of K orthogonal sequences. Note
that the proposed detector can be used for any number of users
that interfere during the training phase. We refer the reader
to [11, Section VII-F] and [22] for a discussion on different
pilots design, where it is shown that using non-orthogonal pilot
sequences does not make a significant difference in terms of
performance. Therefore, any in-cell user is interfered by one
user per interfering cell. Denote Td and T the length of data
transmission phase and coherence time (expressed in symbol
periods), respectively. The length of the training sequences is,
therefore, Tτ = T − Td symbol periods with Tτ > K due to
the assumed orthogonality of pilot sequences [12], [56]. The
orthogonality of pilots also implies that the MMSE estimate
ĝ1k of g1k at the BS is [25], [56], [57]:

ĝ1k =

(∑
l>1

glk +
√
εν1k

)
θ1k, (6)

where ν1k ∼ CN(000, I), θ1k = ϕ1kβ
−1
1k with

ϕ1k =
β2

1k

ε+
∑
l>1 βlk

, (7)

and ε−1 is the effective training signal-to-noise ratio (SNR).
An important consequence of MMSE detection is that the

estimation error g̃1k = g1k − ĝ1k is uncorrelated with ĝ1k,
due to the orthogonality principle: E{ g̃†1kĝ

†
1k } = 000 [11], [25].

Hence it results ĝ1k ∼ CN(000, ϕ1kI) and g̃1k ∼ CN(000, (β1k −
ϕ1k)I).

C. Achievable Rate

The performance measure of interest in this paper is the
rate achieved by the generic in-cell user, given the channel
estimation acquired in the training phase [11], [25], [27].
Denoting the estimated channel by Ĝ1 = [ĝ11, ĝ12, . . . , ĝ1L]
and the estimation error by G̃1 = [g̃11, g̃12, . . . , g̃1L] allows
rewriting (5) as follows:

y = Ĝ1x1 + G̃1x1 +
∑
l>1

Glxl + n. (8)

Let w1k denote the linear receiver for user k. An achievable
rate is [25], [56]:

R1k = E{ log(1 + γ1k) } (9)

where the expectation is with respect to estimated channels
Ĝ1, and the SINR γ1k is given in (10) at the top of the
page. Note that (9) is a lower bound on capacity and
does not provide an ultimate performance of the system. For
the purpose of deriving the group-blind detector, define the
following quantity:

y′ = Ĝ1x1 + G̃1x̃1 +
∑
l>1

Glxl + n, (11)

where x̃1 is independent of any other variable and has same
covariance as x1. As such, y′ has SINR equal to (10), hence
any SINR-based performance of the group-blind detector can
be equivalently evaluated on y′. Hereinafter, we denote G =
{Gl}Ll=1 and G′ = {Ĝ1, G̃1} ∪ {Gl}Ll=2.

Remark 1. Note that the column vectors in G are condition-
ally dependent given G̃1, and follow a multivariate Gaussian
distribution whose conditional mean and covariance can be
derived according to [58, Proposition 3.13]. Such conditional
dependence will be taken into account in all numerical results
provided in Section VI.

III. GROUP-BLIND DETECTOR

Blind detection was developed for equalization [59] and in-
terference suppression in multiuser communications [60], and
then generalized to group-blind detection [51] in the context
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of CDMA. In CDMA, blind techniques allow the receiver to
detect the useful signal by knowing the signature sequence of
the user to decode only. Group-blind techniques extend blind
detection to the case where the receiver knows the signature
sequence of a subset of users, rather than one user only. In the
uplink of a cellular network, this corresponds to a BS knowing
in-cell channels and being unaware of out-of-cell channels.
The shortcoming of the application of group-blind techniques
in the cellular networks framework is that the BS has an
imperfect knowledge of in-cell channels, due to the presence
of pilot contamination, rather than a perfect one, as assumed in
traditional blind and group-blind detection techniques. In this
section, we start by presenting in Section III-A the derivation
of a group-blind detector in the case of perfect knowledge
of in-cell channels by following [51], and then propose in
Section III-B a group-blind detector that takes into account the
imperfect (i.e., contaminated) channel knowledge of a subset
of users.

A. Group-Blind Detection without Contamination

First consider a system without estimation errors, where the
receiver has perfect knowledge of the in-cell channels G1, but
has no knowledge about {Gl}l>1. The design of the group-
blind detector is based on the decomposition of the signal
space, range{G1,G2, . . . ,GL}, into the subspace spanned by
in-cell channels, range{G1}, and its orthogonal complement,
range{ŬG1}:

range{G1,G2, . . . ,GL} = range{G1} ⊕ range{ŬG1
}. (12)

The columns of ŬG1
in (12) span the subspace orthogonal to

the columns of G1 within the signal space. Without loss of
generality, the detector w1k lying in the signal space can be
decomposed as follows:

w1k = ẇ1k + w̆1k,

ẇ1k ∈ range{G1},
w̆1k ∈ range{ŬG1

}.
(13)

There are two steps in the derivation of a group-blind receiver
w1k for user k. The first step consists of defining a (virtual)
received signal comprising in-cell channels only,

yin = G1x1 + n (14)

and then deriving the receiver ẇ1k in order to estimate x1k

from yin knowing G1. According to the MMSE criterion, one
has

ẇ1k = argmin
w̄1k

E{ |x1k − w̄†1kyin|2 }. (15)

The second step consists in deriving w̆1k to deal with the
whole received signal; again, according to the MMSE crite-
rion, one has

w̆1k = argmin
w̄1k

E{ |x1k − (ẇ1k + w̄1k)†y|2 } (16)

with w̄1k ∈ range{ŬG1
}.

In practice, the signal space can be inferred without knowing
all channels, by means of the spectral decomposition of the
received signal covariance Cy|G = E{ yy† |G },

Cy|G = PG†1G
†
1 + P

∑
l>1

G†lG
†
l + I. (17)

Moreover, ŬG1
in (12) can be found via the spectral decom-

position of the subspace orthogonal to the in-cell subspace:

ΠΠΠ⊥G1
Cy|GΠΠΠ⊥G1

= Ŭ
†
G1

Λ̆ΛΛG1
Ŭ
†
G1

+ Ŭ
†
N Ŭ
†
N , (18)

where ΠΠΠ⊥G1
is the projector onto the subspace orthogonal to

range{G1}, given by

ΠΠΠ⊥G1
= I −ΠΠΠG1

= I − G†1(G†1G
†
1)−1G†1, (19)

and the columns of ŬN span the noise subspace.

B. Group-Blind Detection in the Presence of Contamination

We now derive a group-blind detector in the presence of
imperfect in-cell channel knowledge. Differently from the
previous derivation, we now assume that the receiver no longer
knows the exact channel G1, and it does not know the in-cell
signal space either. Based on the knowledge of range{Ĝ1},
the signal space can be decomposed as follows:

range{G1,G2, . . . ,GL} = range{Ĝ1} ⊕ range{ŬĜ1
}. (20)

The columns of ŬĜ1
in (20) span the subspace orthogonal

to the column of Ĝ1 within the signal space. Note that the
above decomposition is consistent with the SINR expres-
sion in (10). Without loss of generality, detector w1k ∈
range{G1, · · · ,GL} can be decomposed as follows:

w1k = ẇ1k + w̆1k,

ẇ1k ∈ range{Ĝ1},
w̆1k ∈ range{ŬĜ1

}.
(21)

The detector design consists of two steps. In the first step, we
consider the (virtual) received signal similar to (14):

yin = Ĝ1x1 + n. (22)

As above, ẇ1k is derived according to the MMSE criterion
(cf. (15)), with yin given by (22). Explicitly,

ẇ1k = (Ĝ
†
1Ĝ
†
1 + 1

P I)−1ĝ1k. (23)

In the second step, w̆1k is derived by taking into account the
whole received signal. As above, w̆1k is derived according to
the MMSE criterion (cf. (16)):

w̆1k = argmin
w̄1k

E{ |x1k − (ẇ1k + w̄1k)†y′|2 } (24)

with w̄1k ∈ range{ŬĜ1
}. Following a derivation similar to

that in [51, eq. (60)] and using the orthogonality between ŬĜ1

and Ĝ1 yields:

w̆1k = − Ŭ
†
Ĝ1

(
Ŭ
†
Ĝ1
C†y|GŬ

†
Ĝ1

)−1

Ŭ
†
Ĝ1
C†y′|G′ẇ

†
1k, (25)
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Training
phase Data transmission phase with blank subframes

FIG. 1: Frame structure for generic users in Cell 1 and Cell 2. The training phase is traditional, with orthogonal pilots reused in each cell.
The data transmission phase is modified by the introduction of silences, referred to as blank subframes, where users within a same cell
do not transmit. Blank subframes (with white background on figure) are pseudo-randomly and independently placed within each cell. As a
consequence, it can occasionally occur that users of both cells remain silent during the same subframe.

where Cy|G is given in (17), and Cy′|G′ := E{ y′y′†|G′ } is the
covariance of the signal in (11), given by

Cy′|G′ = P Ĝ
†
1Ĝ
†
1 + P G̃

†
1G̃
†
1 + P

∑
l>1

G†lG
†
l + I. (26)

By combining (21), (23) and (25), we obtain the group-blind
detector w1k, that is explicitly given by

w1k =

{
I − Ŭ

†
Ĝ1

(
Ŭ
†
Ĝ1
C†y|GŬ

†
Ĝ1

)−1

Ŭ
†
Ĝ1
C†y′|G′

}
ẇ†1k. (27)

Note that (27) can be applied to the case of cells with different
number of users. Furthermore, it can be used in the presence
of general estimation impairments as modeled by the error G̃1

and the imperfect estimate Ĝ1.
The implementation of the detector in (27) requires the

knowledge of Cy′|G′ , which is practically not available at
the BS. While the analytical results in Section V assume
the knowledge of Cy′|G′ , Section IV provides a method to
obtain a practical approximation of Cy′|G′ , which is validated
in Section VI.

IV. IMPLEMENTATION

The knowledge of Cy|G and Cy′|G′ is needed to implement
(25). In the below Section IV-A, we propose a method, which
we refer to as method of silences, to obtain an approximation
of Cy′|G′ through the estimated aggregate out-of-cell channel
covariance. With such estimation, a practical implementation
is proposed in Section IV-B. The method of silences that we
propose is practically implementable due to its resemblance
to the Almost Blank Subframes technique in LTE [55], [61],
[62]. This method is also capable of reaching a large fraction
of the gain achievable with the ideal group-blind detector in
several scenarios as shown in Section VI.

We note that the group-blind detector (27) can be applied
to massive MIMO irrespective of the covariance estimation
scheme, although any practical implementation, and so its
performance, depends on the particular estimation chosen. A
thorough analysis of general estimation methods is beyond the
scope of this paper and is left as a future work.

A. Out-of-cell Channel Covariance Estimation

The method that follows, which we refer to as method of
silences, is a data encoding that allows to derive an estimation
of the aggregate out-of-cell channel covariance

ΣΣΣ1 :=
∑
l>1

G†lG
†
l . (28)

During each coherence time of duration T , the frame of each
user is partitioned into a training frame, of duration Tτ , and a
data frame, of duration Td = T − Tτ (see Fig. 1). For clarity
of exposition, let the data frame be divided into subframes (it
will appear evident that this assumption is inessential). Each
BS independently selects, uniformly at random, a subset of
subframes during which users within its cell do not transmit.

Let α denote the fraction of blank subframes (silences).
During a blank subframe, in-cell users are silent, and the
signal received by the BS is the superposition of the signals
transmitted by users in other cells. Users within each cell can
be either silent (with probability α) or active (with probability
1− α). The received signal during blank subframes is

y∗ =
∑
l>1

alGlxl + n, (29)

where al models whether users in cell l are silent (al = 0)
or active (al = 1). Since base stations do not cooperate,
{a2, . . . , aL} are i.i.d. random variables; moreover, since cells
choose the blank subframes uniformly at random, each vari-
able al is Bernoulli distributed with probability of success
1 − α. The covariance matrix Cy∗|G = E{ y†∗y†∗ |G } of the
received signal is

Cy∗|G =
∑
l1>1

∑
l2>1

E{ al1al2 }G
†
l1
G†l2Pδl1l2 + I

= (1− α)P
∑
l>1

G†lG
†
l + I, (30)

hence, the aggregate out-of-cell channel covariance (28) can
be retrieved as follows:

ΣΣΣ1 =
1

(1− α)P
(Cy∗|G − I). (31)

Denote T∗ the set of symbol periods during blank subframes.
Replacing the covariance matrix Cy∗|G on the RHS of (31)
with the sample-covariance

Ĉy∗|G =
1

αTd

∑
m∈T∗

y∗(m)y∗(m)† (32)
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S1 D rangefgl1W l > 1g

Og11; Qg11 2 S1

S2 D rangefgl2W l > 1g

Og12; Qg12 2 S2

FIG. 2: Conceptual representation of the signal space in the massive
regime with negligible effect of noise during training (ε = 0).
Channels are asymptotically orthogonal in the a.s. sense; however,
for fixed in-cell user j, both estimated and error vectors lie in
Sj = range{glj : l > 1}. Although their projections onto vectors
in Sj do not vanish in general, projections onto vectors in Sk, k 6= j,
do vanish.

results in the following estimation of ΣΣΣ1:

Σ̂ΣΣ1 =
1

(1− α)P
(Ĉy∗|G − I). (33)

B. Detector Implementation

In order to implement w1k in (27), the BS requires the
knowledge of Cy′|G′ and Cy|G. We below discuss approxima-
tions of Cy′|G′ and Cy|G that can be practically obtained.

Approximation 1. The covariance matrix Cy′|G′ can be ap-
proximated as follows:

Cy′|G′ ≈ C◦y′|G′ = P Ĝ
†
1Ĝ
†
1 + P Σ̂ΣΣ1 + I, (34)

where Σ̂ΣΣ1 is obtained in (33) via the method of silences, and
Ĝ1 is obtained via the training phase.

The above approximation follows from the fact that Cy′|G′ is
postmultiplied by ẇ†1k ∈ range{Ĝ1}, and n−1G̃

†
1ẇ
†
1k

a.s.−−→ 000
(cf. (27)).

Approximation 2. The covariance matrix Cy|G can be approx-
imated as follows:

Cy|G ≈ C◦y|G =
1

1− α
[ĈABS

y − αI] (35)

where ĈABS
y is the covariance

ĈABS
y =

1

Td

Td∑
m=1

y(m)y(m)†, (36)

and both (35) and (36) take into account the presence of
silences during the data transmission phase. The derivation
of (35) follows an approach similar to (30).

Using Approximations 1 and 2 in (27) yields the following
implementation form of the group-blind detector:

w◦1k =

{
I − Ŭ

†
Ĝ1

(
Ŭ
†
Ĝ1
C◦y|GŬ

†
Ĝ1

)−1

Ŭ
†
Ĝ1
C◦†y′|G′

}
ẇ†1k. (37)
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S1 D rangefgl1gl>1

Og11; Qg11 2 S1

S2 D rangefgl2gl>1

Og12; Qg12 2 S2

Fig. 1: Conceptual representation of the signal space in the massive
regime. All channels become asymptotically orthogonal in the
a.s. sense; however, for any fixed in-cell user j , both estimated
and error vectors belong to Sj D rangefglj W l > 1g. Thus, their
projections onto other vectors in Sj do not vanish in general,
although projections onto any other vector, that belongs to Sk ,
k ¤ j , do vanish.

1
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2

1

3

4

2

1

3

4

2

Cell 1
(Ref. Cell)

Cell 2

Cell 3

Fig. 2: Interference in the massive regime. During the training phase,
the signal received from each in-cell user is corrupted by the
interference of one user only per interfering cell (users with
label 1 on figure), that causes pilot contamination; remaining
users (users with labels di↵erent from 1 on figure) are nulled
since pilots are orthogonal. In the massive regime, the same
subset of out-of-cell users that caused pilot contamination
continues to interfere, while interference from remaining users
vanishes.

As a consequence, in-cell user k is asymptotically interfered
by out-of-cell users who used the same training sequence only
(see Fig. 2). We can claim that a same conclusion, namely
that in-cell user k is not a↵ected by user j ¤ k in other cells,
remains true with the receiver in (31). In particular, (15) does
not asymptotically depend on users with j ¤ k, irrespective of
the cell. This is evident for the first component of the detector,
Pw1k , that is asymptotically proportional to Og1k (c.f. (28)); the

next Lemma proves the claim for the second component, Mw1k .

Lemma 1. Asymptotically, Mw1k is orthogonal to the channel
of user j ¤ k:

1

n
Mwé

1kg
é
lj

a:s:���! 0; j ¤ k: (33)

Proof: (Sketch) By construction, Mw1k belongs to
.range Og1k/? \ S . In general, we can decompose Mw1k into
a component, Mwk

1k , that belogs to .range Og1k/? \ Sk , and the
orthogonal complement, Mw?

1k , that belongs to .range Og1k/? \
.S1 ˚ � � � ˚ Sk�1 ˚ SkC1 ˚ � � � ˚ SK/. Therefore, since glj

belongs to Sj , it results, for any j ¤ k, that

1

n
Mwé

1kg
é
lj ⇣ 1

n
. Mw?

1k/ég
é
lj : (34)

This expression provides the coe�cient of the symbol xlj after
detection, since the other component of the detector for user
k, that is Pw1k , is asymptotically orthogonal to glj . Therefore,
MSE is minimized by selecting Mw?

1k D 0 and nulling the
coe�cient of the component xlj . . ⇤

Therefore, (15) is asymptotically equivalent to

1

n
w

é
1ky ⇣ 1

n
w

é
1k

Ogé
1kx

é
1k C 1

n
w

é
1k

Qgé
1k Qxé

1k

C
X

l>1

1

n
w

é
1kg

é
lkx

é
lk C 1

n
w

é
1kn: (35)

When w1k D Og1k , it can be shown, using (32), that

1

n
Ogé

1ky 0 a:s:���! '1kx1k C '1kˇ�1
1k

X

l>1

ˇlkxlk ; (36)

and, consequently,

�1k
a:s:���! N�NGB

1k WD
ˇ2

1kP
l>1 ˇ2

lk

: (37)

The above result was first obtained (with ML rather than
MMSE detection during training) by Marzetta in [6], and later,
within a much more general framework, in [11], by Hoydis et
al., as a special case of a large-system limit analysis.

In order to compare group-blind vs. non-group-blind (tradi-
tional, Mw1k D 0) detection, we investigate the following ratio,

N⌘1k D N�1k

N�NGB
1k

; (38)

that is understood as the asymptotic SINR gain achieved by
using the group-blind approach.

B. Performance with One Dominant Interfering Cell

We model a scenarion with one dominant interfering cell
with L D 2. In this case, the variable after detection is (c.f.
(35)):

1

n
w

é
1ky 0 ⇣ 1

n
w

é
1k

Ogé
1kx

é
1k C 1

n
w

é
1k

Qgé
1k Qxé

1k

C 1

n
w

é
1kg

é
2kx

é
2k C 1

n
w

é
1kn: (39)

Since the orthogonality principle implies that Qg1k is asymp-
totically orthogonal to Og1k , irrespective of ⌫1k , it results
MUk ⇣ Qg1k=k Qg1kk2, hence (29) becomes

Mw1k ⇣ �
Qgé
1k

Qgé
1k

Qgé
1kCy0 Qgé

1k

C
é
y0 Pwé

1k : (40)

In the following lemma, we find the a.s. limit in the massive
regime.

FIG. 3: Interference in the massive regime. During the training
phase, the signal received from each in-cell user is corrupted by
the interference of one user only per interfering cell (users with
label 1), which causes pilot contamination. Remaining users (labels
different from 1) are nulled since pilots are orthogonal. During the
data transmission phase, the same subset of out-of-cell users that
caused pilot contamination interferes, while interference from other
users asymptotically vanishes.

Denote γ◦1k the SINR achieved with w◦1k. The performance
of w◦1k depends on the accuracy of the estimation Σ̂ΣΣ1, which
in turn depends on α for fixed Td, i.e., γ◦1k = γ◦1k(α).
In terms of achievable rate, the optimum α is the one that
maximizes the net achievable rate (1 − α)R1k(α), where
R1k(α) = E{ log(1 + γ◦1k) }.

V. ASYMPTOTIC ANALYSIS

In this section we derive analytical results for the asymptotic
SINR gain achieved by the proposed group-blind detector
in the massive regime, i.e., for n → ∞ while keeping K
and L finite. We give preliminary properties in Section V-A.
Then in Section V-B we study in detail a scenario with one
dominant interfering cell that takes into account the effect of
noise during training. Finally, in Section V-C we consider the
general multicell scenario in the high-SNR regime.

A. Preliminaries

A first important observation in the analysis of the massive
regime is that the effect of any uncorrelated noise vanishes
in the limit of an infinite number of antennas [11]. There-
fore, only non-vanishing interfering terms after detection can
bound the SINR, and it is natural to consider the network as
interference-limited. The following two properties of channels
are at the basis of our asymptotic results:

i) As n → ∞ with K and L finite, channels be-
come asymptotically orthogonal in the a.s. sense, i.e.,
n−1g†klg

†
k′l′

a.s.−−→βklδkk′δll′ ;
ii) In the limit of infinite effective-training SNR, i.e., ε = 0,

it results ĝ1k ∈ Sk := range{glk : l > 1} (cf. (6)).
Due to i), the following limit holds:

1

n
ĝ†1kg

†
lj =

1

n
ϕ†1kβ

−1
1k

(∑
m>1

g†mk +
√
εν†1k

)
g†lj
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a.s.−−−→ ϕ†1kβ
−1
1k β

†
ljδ
†
kj . (38)

A conceptual representation for the structure of the signal
space in the massive regime when ε = 0 is shown in Fig. 2.
Asymptotically, the signal space S = range{G1,G2, . . . ,GL}
is the direct sum of the K subspaces {Sk}Kk=1, S = S1⊕S2⊕
· · · ⊕ SK , each of which is spanned by {g1k, g2k, . . . , gLk}.
As a consequence, in-cell user k is asymptotically interfered
by out-of-cell users who used the same training sequence only
(see Fig. 3). A similar conclusion, namely that in-cell user k is
not affected by user j 6= k in other cells, remains true with the
proposed detector (cf. (27)), as proven in the below lemma.

Lemma 1. Denote z1k = n−1w†1ky
′ the variable after detection

normalized to the number of antennas. The following asymp-
totic relation holds:

z1k �
1

n
w†1kĝ

†
1kx
†
1k +

1

n
w†1kg̃

†
1kx̃
†
1k

+
∑
l>1

1

n
w†1kg

†
lkx
†
lk +

1

n
w†1kn. (39)

Proof: See Appendix A . �
We refer to the case where w̆1k = 000 and ẇ1k is a linear

detector (MF, MMSE, or RZF) as non-group-blind detection.
In order to compare group-blind (GB) vs. non-group-blind
(NGB) detection, we will investigate the following metric of
interest.

Definition 1. The asymptotic SINR gain provided by group-
blind detection is

η̄1k =
γ̄1k

γ̄NGB1k

, (40)

where γ̄1k and γ̄NGB1k are the asymptotic SINRs achieved by
the proposed group-blind detector and by non-group-blind
detectors, respectively.

The asymptotic SINR achieved with non-group-blind detec-
tors is [11], [25]:

γ̄NGB1k :=
β2

1k∑
l>1 β

2
lk

. (41)

B. Performance with One Dominant Interfering Cell

We now consider the case L = 2 to model a scenario with
one dominant interfering cell. In this case, the variable after
detection is (cf. (39)):

z1k �
1

n
w†1kĝ

†
1kx
†
1k +

1

n
w†1kg̃

†
1kx̃
†
1k

+
1

n
w†1kg

†
2kx
†
2k +

1

n
w†1kn. (42)

The SINR corresponding to the variable z1k is provided by
the following theorem.

Theorem 1. Let L = 2. The following asymptotic SINR γ̄1k

for user k is achievable with group-blind detection:

γ̄1k =

[
1 +

1

(1 + ε/β2k)2

]
β2

1k

β2
2k

. (43)

Proof: See Appendix B. �

The following corollary results from Theorem 1.

Corollary 1. Let L = 2. The following asymptotic SINR gain
for user k is achievable by group-blind detection:

η̄1k = 1 +
1

(1 + ε/β2k)2
. (44)

Proof: The result follows from (43) and by noticing that
γ̄NGB1k = β2

1k/β
2
2k from (41). �

Both the asymptotic SINR γ̄1k and the gain η̄1k simplify in
the limit ε→ 0, as specified in the corollary that follows.

Corollary 2. Let L = 2 and ε→ 0. The following asymptotic
SINR γ̄1k for user k is achievable by group-blind detection:

γ̄1k → 2γ̄NGB1k , (45)

and the following limit holds for the asymptotic SINR gain:

η̄1k → 2. (46)

Proof: By assuming ε � β2k, η̄1k can be expanded as
η̄1k = 2− 2ε/β2k +O(ε2), whence the result. �

The above corollary shows that, in the high-SNR regime,
the asymptotic SINR achieved with group-blind detection is
doubled compared to traditional detection.

Let ∆R̄1k be the rate gap defined as the difference between
the asymptotic rates achieved by user k with and without
group-blind detection:

∆R̄1k = log(1 + γ̄1k)− log(1 + γ̄NGB1k ). (47)

In the high-SNR regime, the value of ∆R̄1k can be approxi-
mated as specified in the following remark.

Remark 2. We substitute (41) and (43) in (47), and consider
the two extreme cases of weak and strong out-of-cell interfer-
ence, given by β2k � β1k and β2k � β1k, respectively. In the
presence of weak out-of-cell interference, the rate gap is given
by ∆R̄1k ≈ 1 bits/s/Hz. In the presence of strong out-of-cell
interference, the rate gap is ∆R̄1k ≈ γ̄NGB1k log2 e bits/s/Hz.
Note that the case β2k � β1k can occur when BSs are
irregularly deployed.

C. High-SNR Performance with Multiple Interfering Cells

In this subsection, we consider the general case of multiple
interfering cells, i.e., L > 2. We assume sufficiently large SNR
during the training phase, which requires ε �

∑
l>1 βlk (cf.

(7)). Similarly, for a sufficiently large number of antennas the
data transmission phase falls in the high-SNR regime [11].
Therefore, we consider the scenario with multiple interfering
cells as interference limited, and we neglect ε in the remainder
of the subsection.

Theorem 2. Let L > 2 and ε = 0. The following asymptotic
SINR γ̄1k for user k is achievable with group-blind detection:

γ̄1k = Lβ2
1k

/{ L∑
l=2

βlk

}2

. (48)

Proof: See Appendix C. �
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The proof unveils the effect of group-blind detection:
while a non-group-blind detector simply removes the self-
interference term originated from G̃1, the group-blind detector
(cf. (27)) allows to partially introduce self-interference in
the decoder in exchange for reducing out-of-cell interference
(cf. (77)). The latter achieves the optimum trade-off by mini-
mizing the MSE in (16), as verified in Appendix D.

Remark 3. Theorem 2 holds in the massive regime, i.e., as
n → ∞ while keeping K and L finite. From property i) in
Section V-A, this holds in practice when n � LK, and thus
when the number of interfering cells satisfies L� n/K. We
note that this would be the case in massive MIMO systems
since the number of significant interfering cells L is bounded
in practice from physical considerations while n is sufficiently
large.

Remark 4. There exist sequences (βlk)l>1 such that the
asymptotic SINR γ̄1k is a non-monotonic function of L. This
does not imply that capacity is non-monotonic as well. In fact,
for any user k, we consider, in line with the literature (e.g. [11],
[25], [56]), an achievable rate that lower bounds and should
not be regarded as an approximation of capacity. The reader
is referred to [63] for results on capacity of MIMO systems in
Rayleigh fading. Capacity of spatially and doubly correlated
MIMO channels can be found in [64] and [65], respectively.
A specific investigation of capacity in mobile communications
can be found in [66]. Outage capacity is studied in [67]. An
investigation on the reliability-rate tradeoff is reported in [68].

The following corollary follows from Theorem 2 by using
(48) and (41) in (40).

Corollary 3. Let L > 2 and ε = 0. The following asymptotic
SINR gain for user k is achievable by group-blind detection:

η̄1k = L
∑
l>1

β2
lk

/{∑
l>1

βlk

}2

. (49)

Note that η̄1k does not depend on β1k. The extrema of η̄1k

as a function of {βlk}l>1 are as follows:

L

L− 1
= η̄min 6 η̄1k 6 η̄max = L, (50)

where the minimum is achieved when β2k = · · · = βLk
and the maximum is achieved when only one element in
{β2k, . . . , βLk} is nonzero. It should be noted that the latter
is achievable in a limit sense, as {βlk} are assumed strictly
positive. Following the argument in Remark 3, L is in practice
finite. Therefore, η̄max is bounded as well, and η̄min is bounded
away from unity.

VI. NUMERICAL RESULTS

We provide in the below Section VI-A numerical results to
validate our analytical results and confirm the performance
gain provided by the proposed group-blind detector with
respect to non-group-blind detectors in realistic scenarios.
Moreover, in Section VI-B we evaluate the performance of
the group-blind detector when it is implemented jointly with
the method of silences, showing that a large fraction of the
promised gain can be achieved.
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FIG. 4: Achievable rate (b/s/Hz) with group-blind (GB) and non-
group-blind (NGB) detection with L = 4 cells, and either K = 1 or
K = 10 users per cell. Users within the reference cell are received
with SNR = 10 dB. Users in adjacent cells are attenuated by 10 dB.

Hereinafter in this section, we consider βlj constant with
respect to j, that is, users within a given cell are received
with same average power, which depends on the cell only.
Within the reference cell, we set β1k = 1, hence SNR = P ,
irrespective of the particular user considered. Unless otherwise
stated, we set ε = 0 and consider MMSE detectors when
plotting curves for traditional (i.e., non-group-blind) detection.
On all figures, dashed lines connect points obtained via nu-
merical simulations, while solid lines are obtained from closed
form expressions. Asymptotic achievable rates are shown with
horizontal solid lines.

A. Analysis Validation and Performance Gain

We start by comparing the rate achievable with and without
group-blind detection in Fig. 4. We consider a scenario with
L = 4 cells, SNR = 10 dB, and a number of users per
cell equal to either K = 1 or K = 10. Fig. 4 shows the
achievable rate R1k (cf. (9)) as a function of the number of
antennas n. GB detection is showed for n > KL, which is the
required minimum number of antennas to properly implement
the detector. Figure 4 confirms the accuracy of the asymptotic
results given in Section V. Moreover, the figure shows that
GB detection outperforms NGB detection, and is more robust
to variations of the network load, i.e., the number of users per
BS antenna.

In Fig. 5, we consider a more involved scenario with a
section of a hexagonal lattice with several concentric rings
of cells arranged around the reference cell. Ring r contains
6r cells, and cells are labeled from inner to outer rings. Cells
with labels 2 + 3(r − 1)r 6 l 6 1 + 3r(r + 1) lie in ring
r. Cell organization and labeling is shown in Fig. 6. Users
are attenuated according to a pathloss model with pathloss
exponent equal to αpl = 3.7. Distance between cell centers
is normalized to one: out-of-cell users are placed at the cell
center, while in-cell users are placed on a circle with radius
din. Therefore, for l ∈ [2 + 3(r − 1)r, 1 + 3r(r + 1)] with
r > 1, it results βlk = r−αpl/2/d

−αpl/2
in , while β1k = 1. We
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FIG. 5: Achievable rate (b/s/Hz) as a function of the number of
antennas n with r = 4 rings of hexagonal cells centered around the
reference cell, K = 1, SNR = 10 dB, and two different positions of
the in-cell user, that is placed either near the cell center (din = 0.2)
or the cell edge (din = 0.5). The two positions correspond to weak
and strong interference scenarios, respectively.
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FIG. 6: Hexagonal cell section and labeling. The reference cell is
labeled 1. Two rings of concentric cells are shown with different gray
levels. Labels referring to cells in the inner and outer rings belong
to [2 : 7] and [8 : 19], respectively.

set P = 10, hence the received SNR is fixed to 10 dB, but the
interference power depends on the distance din of the in-cell
user from the BS. Fig. 5 shows the achievable rate as a function
of the number of antennas with NGB and GB receivers, for
two scenarios corresponding to in-cell user near either the cell
center (din = 0.2) or the cell edge (din = 0.5). In both cases,
we find a significant rate gain and a fast convergence towards
the asymptotic rate as the number of antennas grows.

Figure 7 shows the SINR gain η1k as a function of the
number of cells L obtained by the GB detector with respect
to traditional NGB detectors in a scenario with β2k = β3k =
· · · = βLk. The considered scenario yields the minimum
asymptotic SINR obtainable by the GB detector (cf. (50)).
The asymptotic minimum SINR gain (solid line) is compared
to numerical simulations (points) with n = 300 antennas at the
BS. Even in the worst case scenario, GB detection outperforms
NGB detection, and the analytical lower bound in (50) tightly
approximates simulations.
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FIG. 7: Minimum SINR gain ηmin as a function of the number of cells
L. Theoretical asymptotic gain (solid line) and numerical simulations
(points) with n = 300 are compared.
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FIG. 8: Achievable rate (b/s/Hz) as a function of the number of
antennas n with L = 2, K = 1, SNR = 20 dB, and β11/β21 = 0
dB (strong interference).

B. Performance with the Method of Silences

We consider in Fig. 8 a scenario with L = 2, K = 1,
SNR = 20 dB, and β11/β21 = 0 dB (strong interference). We
compare the achievable rate with traditional detection (MF)
and GB detection, with both perfect ΣΣΣ1 and estimated Σ̂ΣΣ1 with
α = 0.02. In accordance with eqs. (41), (45), and (47), GB
detection outperforms NGB detection by ∆R̄1k = log2(1+2 ·
1)− log2(1 + 1) ≈ 0.585 b/s/Hz. It is also shown that the loss
incurred by using the method of silences is small compared to
the rate gap between GB and NGB detection.

Dependence of the net achievable rate on the blocklength is
depicted in Fig. 9, where the net achievable rate is shown as
a function of the silence fraction α, for the two blocklengths
Td = 500 and Td = 1000 symbols. We interpret Td = 500
symbols as a realistic blocklength (e.g. blocklength equal to
550 symbols for users moving at 250 km/h is derived in [69,
Section IV-B]) and Td = 1000 symbols as corresponding to
a more optimistic scenario. Other parameters are the same as
in Fig. 8. It is shown that there exists an optimum silence
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FIG. 9: Net achievable rate (b/s/Hz) as a function of the fraction of
silence α, for two values of the blocklength Td. Scenario parameters:
L = 2, K = 1, SNR = 20 dB, and β11/β21 = 0 dB (strong
interference).

fraction α (cf. Section IV-B), and that the method of silences
is good enough to ensure a positive rate gap with respect
to NGB detection for practical blocklengths corresponding to
coherence times in the order of the milliseconds. We also
note that the net rate does not appear to be very sensitive
to the blocklength and thus to the coherence time, as long as
a suitable value for α is chosen.

Figure 10 shows the achievable rate R1k vs. the number of
antennas n for GB detection. We consider several values of
ε/β2k, that model whether the estimation error is dominated by
pilot contamination (ε < β2k) or by thermal noise (ε > β2k).
Scenario parameters are as follows: L = 2, K = 1, SNR = 10
dB, and fixed β21 with β11/β21 = 10 dB (weak interference).
The rate achieved by the NGB detector in the presence
of negligible noise during the training phase is plotted for
comparison. The rate achieved with GB detectors decreases
as ε grows, consistently with (43). However, even when the
training phase is severely affected by noise, GB detection still
outperforms NGB detection with noise-free training phase.
Finally, consistently with Remark 2 for the case of weak out-
of-cell interference, Fig. 10 shows a rate gap ∆R̄1k ≈ 1 b/s/Hz
between GB and NGB with negligible noise, i.e., ε� β2k.

VII. CONCLUSION

We proposed a group-blind detector for the uplink of
massive MIMO that takes into account the presence of pilot
contamination and achieves higher rates than those attained
with traditional detectors. We derived analytical results for
asymptotic SINR and achievable rate with unlimited number
of antennas and verified our findings through simulations. We
showed, in particular, that group-blind detection outperforms
traditional detection and is more robust to variations of the net-
work load. Numerical results suggested that the gap between
asymptotic and non-asymptotic rates depends on both SNR
and number of antennas, and can be negligible in practical
scenarios.
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FIG. 10: Achievable rate (b/s/Hz) as a function of the number of
antennas, in presence of non-neglibile noise effects during the training
phase. Scenario parameters: L = 2, K = 1, SNR = 10 dB, and
β11/β21 = 10 dB.

The major novel component of the proposed group blind
detector is a correction filter which exploits the excess degrees
of freedom provided by the large number of antennas per
BS in order to reduce interference. The implementation of
the group-blind detector necessitates the knowledge of the
aggregate instantaneous out-of-cell channel covariance. We
proposed a method, which we referred to as method of silences,
to address this implementation issue. The method of silences
introduces blank subframes within the data transmission phase,
and allows each BS to estimate the required second-order
statistics during such subframes. We showed via simulations
that this method achieves a large fraction of the promised
SINR gain in scenarios of interest.

There are several possible extensions of this work. From a
channel model perspective, it is desirable to account for the
effect of antenna correlation and finite number of degrees of
freedom. In fact, massive MIMO may suffer from an inherent
problem of spatial correlation among BS antennas due to
lack of sufficient spacing among them. From an information-
theoretic standpoint, it is useful to understand the fundamental
limits of detection in the massive regime. Since our detector
was derived by maximizing a traditional lower bound on
capacity, rates higher than those presented could be achievable.
From a system implementation perspective, an analytical study
of the gap between ideal and implemented detectors is of
interest. More generally, practical solutions other than the
method of silences as well as different training phase designs
with non-orthogonal pilots are possible, and their investigation
can be regarded as a future research direction.

APPENDIX A
PROOF OF LEMMA 1

Proof: We prove that n−1w†1kglj
a.s.−−→ 0 for j 6= k by

using expanding w1k in terms of ẇ1k and w̆1k (cf. (21)) and
showing that n−1ẇ†1kglj and n−1w̆†1kglj converge a.s. to zero
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for j 6= k. First note that (23) implies

1

n
ẇ†1kglj

a.s.−−−→ 0, j 6= k. (51)

In order to show that
1

n
w̆†1kglj

a.s.−−−→ 0, j 6= k, (52)

we decompose, without loss of generality, w̆1k as w̆1k =

w̆
‖
1k+w̆⊥1k, where w̆

‖
1k is inside Sk, i.e., w̆‖1k ∈ range{ĝ1k}⊥∩

Sk, and w̆⊥1k is orthogonal to Sk, i.e., w̆⊥1k ∈ range{ĝ1k}⊥ ∩
(S1 ⊕ · · · ⊕ Sk−1 ⊕ Sk+1 ⊕ · · · ⊕ SK). We have that
n−1w̆

‖†
1kg
†
lj

a.s.−−→ 0 and n−1w̆⊥†1k g
†
lj

a.s.−−→ 0 from the orthog-
onality of Sk and Sj when j 6= k, and from the MMSE-
based design of the detector, respectively. The above implies
(52). The lemma then follows from (51), (52), (21) and the
definition of z1k in the statement. . �

APPENDIX B
PROOF OF THEOREM 1

Proof: In the case L = 2, the matrix ŬĜ1
reduces to a

unit-norm vector that is orthogonal to ĝ1k. Since g̃1k is also
asymptotically orthogonal to ĝ1k by virtue of the orthogonality
principle, we replace ŬĜ1

with ĝ1k. Hence, (25) becomes

w̆1k � −
g̃†1kg̃

†
1k

g̃†1kCy′|G′ g̃
†
1k

C†y′|G′ẇ
†
1k. (53)

The following limit holds for the denominator of (53):

1

n2
g̃†1kCy′|G′ g̃1k �

1

n2
g̃†1k(P g̃†1kg̃

†
1k + Pg†2kg2k)g̃1k

a.s.−−−→ P (β1k − ϕ1k)2 + P (ϕ1kβ
−1
1k β2k)2 =: λP, (54)

with λ = (β1k − ϕ1k)2 + (ϕ1kβ
−1
1k β2k)2. Since ẇ1k is

asymptotically proportional to ĝ1k and the proportionality
constant is inessential, we set ẇ1k = ĝ1k; (53) results in

w̆1k � −
1

n2
· 1

λP
g̃†1kg̃

†
1kC

†
y′|G′ ĝ

†
1k. (55)

Expanding w1k = ẇ1k + w̆1k in (42) and discarding terms
that vanish due to asymptotic orthogonality yields:

z1k �
1

n
ĝ†1kĝ

†
1kx
†
1k +

1

n
ĝ†1kg

†
2kx
†
2k

+
1

n
w̆†1kg̃

†
1kx̃
†
1k +

1

n
w̆†1kg

†
2kx
†
2k.

(56)

Terms in (56) satisfy:

1

n
ĝ†1kĝ

†
1k

a.s.−−−→ ϕ1k, (57)

1

n
ĝ†1kg

†
2k

a.s.−−−→ ϕ1kβ
−1
1k β2k, (58)

1

n
w̆†1kg̃

†
1k

a.s.−−−→ λ−1(ϕ1kβ
−1
1k β2k)2(β1k − ϕ1k), (59)

1

n
w̆†1kg

†
2k

a.s.−−−→ − λ−1(ϕ1kβ
−1
1k β2k)3. (60)

Hence, the SINR after detection satisfies

z1k
a.s.−−−→ ϕ1kx1k + (ϕ1kβ

−1
1k β2k)x2k

+ λ−1(ϕ1kβ
−1
1k β2k)2(β1k − ϕ1k)x̃1k

− λ−1(ϕ1kβ
−1
1k β2k)3x2k. (61)

The statement follows by computing the SINR of (61) and by
expliciting ϕ1k and λ in terms of ε and βlk. �

APPENDIX C
PROOF OF THEOREM 2

The below lemma is used in the proof of Theorem 2.

Lemma 2. Let L > 2. Denote Ḡ = [g1, . . . , gL], P = I −
(Ḡcc†Ḡ†)/‖Ḡc‖22 where c is a nonzero vector, and Cy|G =
P ḠḠ† + I . Then

Ḡ†
(
PC†y|GP

†
)+

Ḡ a.s.−−−→ 1

P

(
I − 1

‖c‖22
ccT

)
. (62)

Proof: We will use the following two properties of the
Moore-Penrose pseudoinverse:

P1 for any unitary matrix U , it results U+ = U † and
(UAU †)+ = (U †)+A+U+;

P2 for any invertible diagonal matrix ΛΛΛ, it results
ΛΛΛ1/2A+ΛΛΛ1/2 = (ΛΛΛ−1/2AΛΛΛ−1/2)+.

Moreover, since n−1ḠḠ† a.s.−−→D where D is a diagonal
matrix with positive diagonal elements, we define Qn such
that n−1/2Ḡ = QnD

1/2. As n → ∞, Qn becomes unitary,
and Q†nQn

a.s.−−→ I . We will assume in the remainder of the
proof that Qn is unitary for all n: it can be a posteriori verified
that the final result is valid in the limit. Using the two above
mentioned properties P1 and P2, and expliciting Ḡ in terms
of Qn and D allows to rewrite the RHS of (62) as

Ḡ†
(
PC†y|GP

†
)+

Ḡ =
(
D−1/2Q†nP

Cy|G

n
P †QnD

−1/2
)+
.

(63)
Since Qn is unitary, it is an isometry, hence ‖QnD

1/2c‖2 =
‖D1/2c‖2. Denote α = 1/‖D1/2c‖22. After straightforward
computations, the argument of the pseudoinverse in the RHS
of (63) simplifies in

D−1/2Q†nPn
−1C†y|GP

†QnD
−1/2

= PI − αPcc†D − αPDcc†

+ α2Pcc†D2cc† + Θ(n−1) (64)

where Θ(n−1) represents a matrix with elements that scale as
n−1. Once the vanishing term is discarded, it can be verified
from the definition of pseudoinverse that the RHS of (62) is
the pseudoinverse of (64). �

Proof of Theorem 2: Following Lemma 1, we consider
an equivalent system where users j 6= k are ignored since they
do not asymptotically interfere. This allows to replace, in the
definition of w̆1k (cf. (25)), ŬĜ1

with

ΠΠΠ⊥ĝ1k = I − 1

‖ĝ1k‖22
ĝ†1kĝ

†
1k � I − ϕ−1

1k n
−1ĝ†1kĝ

†
1k. (65)

From (65), (25) is asymptotically equivalent to

w̆1k � −ΠΠΠ⊥ĝ1k

(
ΠΠΠ⊥ĝ1kC

†
y|GΠΠΠ⊥ĝ1k

)+
ΠΠΠ⊥ĝ1kC

†
y′|G′ẇ

†
1k, (66)

where the pseudoinverse is used in place of the inverse since
∆∆∆ := ΠΠΠ⊥ĝ1kC

†
y|GΠΠΠ⊥ĝ1k is not full rank. In the equivalent system,
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ẇ1k tends to be proportional to ĝ1k. Expressing the variable
after detection z1k in terms of the detector components ẇ1k =
ĝ1k and w̆1k and using (38) yields

z1k � ϕ1kx1k + θ1k

∑
j>1

βjkxjk

+
1

n
w̆†1kg

†
1kx̃
†
1k +

∑
j>1

1

n
w̆†1kg

†
jkx
†
jk, (67)

where we explicited g̃1k = g1k − ĝ1k and used the fact that
w̆1k is asymptotically orthogonal to ĝ1k. We prove that the
normalized projection of w̆1k onto interfering out-of-cell user
channels is

1

n
w̆†1kg

†
jk

a.s.−−−→ 1

L
θ1k

(
− Lβjk1{j>1} +

∑
i>1

βik

)
. (68)

Indeed, setting ẇ1k = ĝ1k in (66) yields

1

n
w̆†1kg

†
jk � −

1

n
ĝ†1kC

†
y′|G′ΠΠΠ

⊥
ĝ1k

∆∆∆+ΠΠΠ⊥ĝ1kgjk. (69)

Since Cy′|G′ is premultiplied by a vector in range{ĝ1k} and
postmultiplied by an operator that removes components in
range{ĝ1k}, it can be replaced by P

∑
l>1 g

†
lkg
†
lk, and (69)

becomes
1

n
w̆†1kg

†
jk � −P

∑
l>1

θ†1kβ
†
lkg
†
lkΠΠΠ⊥ĝ1k∆∆∆+ΠΠΠ⊥ĝ1kgjk. (70)

Observing that

ΠΠΠ⊥ĝ1kg
†
jk � gjk −

1

ϕ1k
θ1kβjkĝ1k

= gjk − β−1
1k βjkθ1k

∑
i>1

gik =
∑
i>1

qjikgik, (71)

where qjik = δji − β−1
1k β

†
jkθ
†
1k, (70) reduces to

1

n
w̆†1kg

†
jk � −P

∑
l>1

θ†1kβ
†
lk

∑
i>1

∑
m>1

qlikqjmkg
†
ik∆∆∆+gmk. (72)

Now we use Lemma 2 with c = 111L, where 111L is an L-
dimensional vector of 1’s, and ε = 0 (cf. (6)) to conclude

g†lk∆∆∆+g†mk
a.s.−−−→ 1

P

(
δlm −

1

L

)
. (73)

Using (73) in (72) yields

1

n
w̆†1kg

†
jk � −

∑
l>1

θ†1kβ
†
lk

∑
i>1

∑
m>1

qlikqjmk

(
δim −

1

L

)
(74)

and, therefore, (68) by expliciting qabc terms. By applying (68)
to the last two terms in (67), we obtain

1

n
w̆†1kg

†
1kx̃
†
1k

a.s.−−→ θ1k

L

∑
i>1

βikx̃1k, (75)

1

n
w̆†1kg

†
jkx
†
jk,

a.s.−−→ θ1k

L

(
− Lβjk1{j>1} +

∑
i>1

βik

)
xjk, (76)

hence (67) can be simplified to

z1k
a.s.−−−→ ϕ1kx1k +

{
1

L
θ1k

∑
i>1

βik

}
x̃1k

+
∑
j>1

{
1

L
θ1k

∑
i>1

βik

}
xjk. (77)

The asymptotic SINR corresponding to the RHS in (77) is

γ̄1k =
ϕ2

1k{
1

L
θ1k

∑
i>1

βik

}2

+
∑
l>1

{
1

L
θ1k

∑
i>1

βik

}2 , (78)

which yields (48) by writing θ1k and ϕ1k in terms of βlk. �

APPENDIX D
DISCUSSION ON THE MMSE ACHIEVED BY THE PROPOSED

GROUP-BLIND DETECTOR

In this appendix we show that the SINR achieved in
Theorem 2 is the maximum achievable by detectors in the
class of group-blind detectors with decomposition (21). In
particular, we consider w1k = ẇ1k + w̆1k with ẇ1k given
by (23) and w̆1k derived according to the following MMSE
criterion (cf. (24)):

MMSEGB
1k = min

w̆1k

MSEGB
1k , (79)

MSEGB
1k = E{ |x1k − (ẇ1k + w̆1k)†y′|2 }. (80)

Remark 5. We investigate MMSEGB
1k instead of the traditional

MMSE as defined by MMSE1k = minw1k
E{ |x1k−w†1ky

′|2 }
because the latter requires the side knowledge of G̃1 and
{Gl}l>2, which is not available due to pilot contamination.

We neglect the presence of noise by assuming n = 000 in
(39) and show at the end of the appendix that this assumption
is inconsequential. From (23), it results ẇ1k � ‖ĝ1k‖−2

2 ĝ1k �
n−1ϕ−1

1k ĝ1k, hence

ẇ†1ky
′ � 1

nϕ1k
ĝ†1ky

′ a.s.−−−→ x1k +
∑
l>1

β̄1kxlk, (81)

where β̄lk = βlk/β1k. Introducing (81) in (80) yields

MSEGB
1k � E

[ ∣∣∣∣−∑
l>1

β̄lkxlk − w̆†1ky
′
∣∣∣∣2 ]. (82)

This expression relates to the SINR in (10) as follows:

γ1k
a.s.−−−→ P

MSEGB
1k

, (83)

and the maximum γ1k is obtained with the minimum MSEGB
1k ,

that is (79). Without loss of generality, scale w̆1k as w̆1k �
(nϕ1k)−1x1k for some x1k that is orthogonal to ĝ1k. Denote
λlk the following limit: n−1x†1kglk

a.s.−−→λlk. The orthogonal-
ity of w̆1k with respect to ĝ1k translates into a constraint for
the set of {λlk}l>1 as follows:

w̆†1k
∑
l>1

glk
a.s.−−→ 0 ⇐⇒

∑
l>1

λlk = 0. (84)

Since n−1x†1kg̃1k � n−1x†1k(g1k − ĝ1k) � n−1x†1kg1k, it
follows that

w̆†1ky
′ � ϕ−1

1k λ1kx̃1k + ϕ−1
1k

∑
l>1

λlkxlk. (85)
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Introducing (85) in (82) yields

MSEGB
1k

a.s.−−→ E
[ ∣∣∣∣ϕ−1

1k λ1kx̃1k +
∑
l>1

(β̄lk + ϕ−1
1k λlk)xlk

∣∣∣∣2 ]

= Pϕ−2
1k

{(∑
l>1

λlk

)2

+
∑
l>1

(θ1kβlk + λlk)2

}
. (86)

The optimum set {vlk}Ll=1 minimizes (86) with respect to
{λlk}l>1, which are given by

λ?lk =

{
θ1k

(
− βlk + 1

L

∑
j>1 βjk

)
if 1 < l 6 L,

−
∑L
j=2 λ

?
jk if l = 1.

(87)

The corresponding MMSEGB
1k is

MMSE1k
a.s.−−−→ Pβ−2

1k

1

L

(∑
l>1

βlk

)2
, (88)

where we explicited definitions of λ?lk, ϕ1k and θ1k in terms
of βlk, l > 1. Introducing (88) as the minimum MSEGB

1k in
(83) yields the maximum SINR. It coincides with the SINR
derived in Theorem 2 and shows that our detector maximizes
the SINR within the class of detectors satisfying (21)–(23).

We can now show that neglecting noise at the beginning
of the derivation is inconsequential. Indeed, the noise contri-
bution to the SINR is ‖w1k‖22 � ‖ẇ1k‖22 + ‖w̆1k‖22, because
the two terms are orthogonal. Since ‖ẇ1k‖22 � n−1ϕ−1

1k =
O(n−1), the only term to investigate is ‖w̆1k‖22. Indeed, since
w̆1k ∈ range{ĝ1k}⊥ ∩ Sk ⊆ Sk and {glk}l>1 is a set of
vectors that are asymptotically orthogonal, it results

‖w̆1k‖22 �

∥∥∥∥∥∑
l>1

w̆†1kg
†
lk

g†lkg
†
lk

glk

∥∥∥∥∥
2

2

� ϕ−2
1k

1

n

∑
l>1

(λ?lk)2

βlk
, (89)

which is O(n−1) because, with the exception of n, all other
terms are constants.
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Sapienza Università di Roma, Rome, Italy, and Cen-
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