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Abstract—Millimeter wave communications use large trans-
mission bandwidth and experience severe propagation conditions.
This forces the communication system to operate in the so-called
wideband regime, where signals must be increasingly “peaky”
in order to attain a large fraction of the peak unconstrained
wideband capacity. This paper investigates the capacity of non-
coherent channels as a function of bandwidth for signals with
average and peak power constraints operating in the millimeter
spectrum. Upper and lower bounds on capacity are provided,
and the impact of features peculiar to millimeter wave channels
is investigated. Numerical results for a scenario based on recent
experimental campaigns are provided. It is shown that the rate
achievable by a typical user in a millimeter wave cell with
“non-peaky” signaling can be bounded away from the peak
unconstrained wideband capacity. This suggests to reconsider
the role of signaling “peakedness” in future millimeter wave
communications.

Index Terms—Millimeter wave communication, Fading chan-
nels, Dispersive channels, Information theory

I. INTRODUCTION

A. Background and Motivation

W IDEBAND FADING CHANNELS have been of in-
terest for more than five decades, particularly since it

was shown that the capacity of a fading channel is the same as
that of an additive white Gaussian noise (AWGN) channel in
the infinite-bandwidth limit under an average power constraint
on the transmitted signal [1]. Although frequency-shift keying
(FSK) was shown to approach capacity in this limit, it was
demonstrated that a rate penalty is incurred by constraining
the power spectral density of the received signal [2]. More
recently, different fading models have been investigated in
connection to ultra-wideband (UWB) systems [3]–[5] and
code-division multiple-access (CDMA) systems [6]–[8]. The
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robustness of UWB signals in a multipath environment was
demonstrated experimentally in [9]–[11]. The effect of duty
cycle on the performance of single-user UWB systems was
studied in [12]. The capability of wideband signals to resolve
multipath was investigated in connection to locally generated
reference systems [13]–[15] and transmitted reference systems
[16]–[19]. Multipath has been also studied in connection to
sequence acquisition and synchronization [20]–[23].

The wideband regime refers to the regime of vanishing
signal-to-noise ratio (SNR) per symbol [24]. It has also
been referred to as low-SNR regime [25], [26]. For a fixed
transmitted power, the SNR per degree of freedom decreases
with increasing bandwidth; the so-obtained channel is energy-
limited (in the terminology of [27]) rather than bandwidth-
limited. A critical phenomenon occurs in the wideband regime:
if the input signal is constrained to allocate energy evenly over
a scattering channel, then capacity scales with the inverse of
transmission bandwidth [6], [28]. A similar behavior holds
for multipath channels with a finite number of paths: the
mutual information attained by “white-like” signals scales
with the inverse of the number of paths [7]. The class of
capacity-achieving input distributions in the wideband regime
was derived and the signaling based on such distributions was
called flash signaling in [24]. The general guideline arising
from the above studies is that capacity scales as the inverse of
the number of independent branches of the channel when the
signaling is “non-peaky,” i.e., when the energy of the trans-
mitted signal is allocated evenly over the degrees of freedom
of the channel. On the contrary, a signaling that concentrates
energy over a small subset of degrees of freedom, which
is referred to as “peaky” signaling, becomes asymptotically
optimal as the SNR per degree of freedom vanishes. However,
from a practical viewpoint, it was shown in [29] that “non-
peaky” signaling is sufficient to achieve a significant fraction
of the wideband capacity in current wireless scenarios, in
particular Wi-Fi and cellular systems.

The proposal of millimeter wave (mmWave) communica-
tions as one enabling technology for 5G [30] stimulates a
renewed interest in the study of wideband channels. In par-
ticular, the investigation of the wideband regime is of inherent
interest for mmWave communications, where the bandwidth
is much larger than that used in Wi-Fi and cellular systems.
Several portions of the spectrum, namely segments accounting
for up to 1 GHz of total bandwidth in the 28–38 GHz band,
the license-free 57–64 GHz band, and E-bands at 71–76 GHz,
81–86 GHz, and 92–95 GHz, are available for potential use
[30], [31]. A bandwidth of 1 GHz has already been con-
sidered in recent experimental campaigns [31]–[33]. Peculiar
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propagation phenomena, such as blockage, line-of-sight (LOS)
propagation, and frequency-selective power absorption, require
to revisit theoretical studies in order to draw conclusions and
design insights valid for mmWave communications.

In this work we derive upper and lower bounds on the
capacity of wideband channels under both peak and average
power constraints. We consider a doubly-dispersive block-
fading channel model, which allows us to account for peculiar
features of mmWave channels while remaining analytically
tractable.

B. Related Work

A first classification of recent work on fading channels
can be drawn on the basis of the channel model. The so-
called standard block-fading model [25], [26], [34]–[36] and
the stationary fading model [6], [37]–[41] represent the two
extreme models corresponding to “discontinuous” and “con-
tinuous” fading correlation across signal space dimensions,
respectively. Variations and special cases are treated in [42]–
[45]. A second classification can be based on the SNR regime
of interest: with the exception of [34], [41], capacity bounds
are typically derived with a focus on either the high-SNR
regime [38], [39] or the low-SNR regime [6], [24]–[26], [40].
Finer classification includes the type (average vs. peak) of
power constraint and the specific description of the fading
process (absence or presence of specular component, fading
distribution, etc.). A survey on fading channels and the effect
of signaling constraints on capacity can be found in [8]. The
connection between block and stationary models is discussed
in [46]. We detail below the above literature in terms of block
and stationary models in both low- and high-SNR regimes.
A partial summary of the discussed literature is presented in
Table I.

1) Block-fading model: The standard block-fading model
was introduced in [47]. In this model, channel coefficients
are divided into blocks called coherence blocks: the fading
coefficients within each block are identical, while different
blocks fade independently. The size of each block depends
on the physical properties of the channel. Certain structures
of the optimal capacity-achieving input distribution as well as
the bounds on the capacity of a Rayleigh flat fading channel
were shown for several practical scenarios in [34]. In [35]
it was shown that the capacity of the Rayleigh block-fading
channel grows logarithmically as a function of SNR in the
high-SNR regime. The Rayleigh block-fading channel in the
low-SNR regime was studied in [25], where the sublinear
term of capacity was characterized as a function of the SNR
per degree of freedom and the coherence block size. The
extension to the MIMO setting can be found in [26]. Capacity
of the Rician block-fading channel in the low-SNR regime was
studied in [48], [49] using the general framework proposed
in [24]: their results are in line with our analysis for a
channel with no blockage and absorption in the limit of infinite
bandwidth. In [36], a block model accounting for sparsity in
the delay-Doppler plane is proposed, and an analysis of mutual
information in the wideband regime is presented.

2) Stationary fading model: The wide-sense stationary un-
correlated scattering (WSSUS) model was proposed in [50]
and further investigated in [51]. It was shown in the ’60s
that the wideband capacity limit of a Rayleigh fading channel
is equal to that of an AWGN channel, and that the limit
is achievable via FSK [1], [52]. The extension to multipath
fading channels was derived later in [7]. The bandwidth
scaling was studied in [6], [28], where it was shown that the
rate achieved by a spread-spectrum signal transmitted over a
WSSUS fading channel scales as the inverse of the signal
bandwidth. The adopted channel model assumes a diffuse
scattering accounting for a continuum of infinitesimal paths.
Spread-spectrum signals were defined as those signals with
second and fourth moments scaling as 1=Wtot and 1=W 2

tot,
respectively, where Wtot denotes the signal bandwidth; such
scaling implies that energy is evenly spreading on signal space
dimensions. The conclusion that uneven energy spreading is
required to achieve a nonvanishing information rate in the
wideband regime was further reinforced in [37]. Capacity per
unit energy, which is strictly related to capacity at low-SNR,
is investigated in [40]. Further investigations on the low-SNR
capacity of MIMO systems were conducted in [53]. A similar
behavior was observed in [7] for “white-like” signals trans-
mitted over a multipath channel with finite number of paths.
It was shown that capacity scales as the inverse of the number
of resolvable paths when the receiver has side information on
path delays; without such information, capacity approaches
zero with increasing bandwidth even when the channel has a
single path with time-varying delay. The high-SNR regime
was characterized in [38], where the high-SNR asymptotic
expansion of capacity up to the second order term, called
fading number, was derived. It was shown that capacity grows
double-logarithmically as a function of SNR if the fading
process is regular. The analysis was extended to non-regular
fading processes in [39] to close the gap between the double-
logarithmic behavior observed with stationary fading channels
and the logarithmic behavior observed with the block-fading
model. In [41], bounds on the capacity of Rayleigh fading
WSSUS channels as a function of bandwidth were proposed
under both average and peak power constraints.

C. Main Contributions

In this paper we derive upper and lower bounds on the ca-
pacity of noncoherent channels that take into account essential
mmWave propagation features. The main contributions can be
summarized as follows:
� We consider a channel model that describes peculiar

mmWave propagation properties on the basis of recent
experimental campaigns [31]–[33]. We consider a doubly-
dispersive underspread channel, and use a block-fading
model that can describe three mmWave propagation
phenomena: blockage, LOS propagation, and frequency-
selective power absorption due to oxygen and water
vapor.

� We derive upper and lower bounds on the capacity of the
noncoherent channel as a function of bandwidth. Together
with the average power constraint we set a peak constraint
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TABLE I: A (partial) summary of the previous literature.

SNR regime

Low-SNR regime High-SNR regime

Rayleigh, MIMO capacity bounds for arbitrary SNR [34]

Rayleigh, MIMO, capacity lower bounds via training for arbitrary SNR [54]

Rayleigh, SISO [25] and MIMO [26] wideband Rayleigh, MIMO, multiplexing gain [35]

Rician, wideband [48], [49]B
lo
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Sparse delay-Doppler, wideband [36]

Rayleigh, capacity bounds for arbitrary SNR [41], [55]

Multipath, capacity bounds for arbitrary SNR [56]

Rayleigh, FSK [1], [52] Rayleigh, “regular” channels [38]

Rayleigh, bandwidth scaling [6], [28] Rayleigh, “non-regular” channels [39]

Multipath channels [7]

Rayleigh, capacity per unit-cost [37], [40]
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Rayleigh, SISO [57] and MIMO [53]

(in the form of amplitude or fourth moment constraint),
which restricts the system to use “non-peaky” signaling.
Upper bounds are derived by providing side information
about fading and blockage processes, and extending a
technique that we refer to as supremum splitting from
[41], [57], which accounts for the peak constraint. Lower
bounds are derived either by considering a worst-case
rate penalty due to the peak constraint or by assuming
a training-based scheme to estimate the channel. In the
former case, we adapt a previous bound proposed in [41]
for WSSUS channels to the block-fading channel; in the
latter case, we modify the analysis in [54] to accomodate
the proposed channel model and specialize the result
to truncated-Gaussian inputs. In both cases, bounds are
tightened by using a time-sharing argument [58].

� We evaluate the bounds by considering a cellular scenario
where system parameters are chosen in accordance with
experimental campaigns [31]–[33]. We demonstrate that
the system can operate in the wideband regime and
discuss the detrimental effect on the achievable rate
caused by the presence of a peak constraint as well as
the importance of increased “peakedness” of the signal
transmitted by a typical user.

The remainder of this paper is organized as follows. Section II
describes the system model, including the channel model.
Section III and IV present upper and lower bounds on the
capacity of the noncoherent channel. Numerical results are
discussed in Section V, and Section VI concludes the paper.

Notations: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors
and matrices are denoted by bold lowercase and uppercase
letters, respectively. For example, a random variable and its
realization are denoted by x and x; a random vector and its

realization are denoted by x and x; a random matrix and
its realization are denoted by X and X , respectively. The
element .k; l/ of a matrix is denoted using brackets, e.g. ŒX �kl;
ˇ denotes the Hadamard (elementwise) product; and Vec.�/
denotes the vectorization of the matrix in the argument. Proper
Complex Normal distribution with mean m and variance �2 is
denoted by CN.m; �2/, and its probability measure is denoted
by �m;�2 . Bernoulli distribution with probability of success
p is denoted by Bern.p/. The nonnegative part of a real
number x is defined as follows: .x/C WD maxf0; xg. The
Frobenius norm of a matrix X is denoted kXkF. Expectation
and variance of a random variable are denoted by Ef � g and
Vf � g, respectively.

II. SYSTEM MODEL

This section is organized as follows. We present in Section
II-A the signal model. Section II-B describes the channel
model that accounts for some of the features of mmWave
channels. Finally, the problem statement is formulated in
Section II-C.

A. Signal Model

We adopt the following discrete signal model [8]

Y D Hˇ XCN (1)

where X and Y are the matrices of transmitted and received
symbols, respectively, H is the channel matrix, N is the
random matrix, representing additive noise, with i.i.d. elements
drawn according to CN.0;N0/. Without loss of generality, we
can assume N0 D 1. Matrices in (1) have dimension K � L,
where K and L are the number of dimensions of the signal
space in the time and frequency domains, respectively. There-
fore, symbol received, symbol transmitted, channel coefficient
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FIG. 1: Signal and channel models. Each degree of freedom is
depicted as a small block of sides T and W . Each channel
coherence block comprises a subset of blocks and has sides
Tcoh and Wcoh. Fading coefficients within the coherence block
.i; j / are collected in the matrix Hij, which is a constant
matrix with generic element equal to hij .

and noise at time epoch k on the frequency subband l are
ykl WD ŒY�kl, xkl WD ŒX�kl, hkl WD ŒH�kl and nkl WD ŒN�kl,
respectively. This model can be derived from the discretization
of a continuous model through transmission and reception over
a time interval Œ0; Ttot � and frequency interval Œ0;Wtot� of a
Weyl-Heisenberg set fgkl .t/ WD g.t � kT /ei2�lW g.k;l/2Z2 ,
where g.t/ is a baseband pulse with effective duration T and
effective bandwidth W ; the reader is referred to [41], [55],
[59]–[62] for a detailed exposition of the mapping from the
continuous to the discrete representations.

B. Channel Model including mmWave Features

We adopt the standard block-fading model, where time and
frequency resources are partitioned into coherence blocks of
duration Tcoh and bandwidth Wcoh, and fading coefficients
within each coherence block are identical. The channel is
assumed to be doubly-dispersive with delay spread Td and
Doppler spread WD, which are related to the coherence
bandwidth Wcoh and coherence time Tcoh, respectively, as
Wcoh D 1=Td and Tcoh D 1=WD (see Fig. 1). The quantity
�H D TdWD D 1=.TcohWcoh/ determines whether the channel
is underspread (�H < 1) or overspread (�H > 1). As a
matter of fact, most wireless channels are highly underspread,
i.e., �H � 1. This continues to hold for mmWave channels,
as detailed in the following. Most channels experience delay
spread between Td D 50 ns and Td D 500 ns, corresponding
to coherence bandwidth 2 MHz 6 Wcoh 6 20 MHz . Doppler
bandwidth is mainly due to transmitter and receiver relative
radial motion, and it is given by WD=2 D f0vr=c, where f0 is

the carrier frequency, vr is the velocity of the radial motion,
and c is the speed of light. Suppose f0 D 60 GHz, that is in
mmWave spectrum, and consider two scenarios, corresponding
to vr D 1 m/s (walking speed) and vr D 100 m/s (high-
speed train top speed): Doppler bandwidth is WD D 0:4 KHz
and WD D 40 KHz, respectively, and thus coherence time is
bounded as follows: 25 μs 6 Tcoh 6 2:5 ms. In the above
scenarios, �H D TdWD D 1=.TcohWcoh/ 6 10�2, showing that
channels operating at mmWave frequencies are significantly
underspread even with high mobility and long delay spread.

Denote DT D Ttot=Tcoh and DW D Wtot=Wcoh the number
of coherence blocks in time and frequency, respectively, and
`T D K=DT D Tcoh=T and `W D L=DW D Wcoh=W the
number of dimensions of each coherence block in time and fre-
quency, respectively. Since the channel is underspread, signals
transmitted over each coherence block have ` WD `T`W � 1

degrees of freedom that experience the same fading. For each
1 6 i 6 DT and 1 6 j 6 DW, denote hij the common fading
coefficient, i.e.

hij WD ŒH�.i�1/`TCk;.j�1/`WCl
(2)

which holds for all 0 6 k 6 `T � 1 and 0 6 l 6 `W � 1.
Three essential properties of mmWave propagation channels

are taken into account [31]:
(i) blockages occur with probability pB, i.e., there exists a

fraction pB of time during which the transmitted signal
cannot reach the receiver;

(ii) the channel can be highly LOS, highly NLOS, or
blocked;

(iii) there exists an average power absorption profile due to
atmospheric gases and water vapor that is frequency-
dependent (e.g. values are tabulated in [63]).

We model (i)–(iii) by the following generic coefficient hij in
(2),

hij D aivj gij (3)

where ai and gij are random variables modeling blockage
and fading at coherence time block i and coherence band j ,
respectively, while vj is a deterministic attenuation modeling
absorption at coherence band j . In particular, property (i) is
modeled by assuming ai ∼ Bern.1�pB/, i.e., the distribution
of ai is Pai D pBı0 C .1 � pB/ı1, where ıx denotes a Dirac
measure with single atom at x. Property (ii) implies that,
conditioned on ai D 1, the distribution of hij / gij models
both LOS and NLOS environments. To this end, gij is modeled
as a Gaussian random variable with nonzero mean (Rician
fading) and fixed second moment, i.e., gij ∼ CN.�; 1� j�j2/.
Note that Ef gij g D � is constant irrespective of the block,
which models a channel whose specular component is dom-
inated by a single path. Property (iii) is modeled by means
of a deterministic sequence .v1; v2; : : : ; vDW/ that accounts
for pathloss and absorption of different frequency bands.
Denote �j the Gaussian measure with mean vj� and variance
v2j .1 � j�j

2/. From the above, hij is distributed as

Phij D pBı0 C .1 � pB/�j

PhijjaiD1 D �j

PhijjaiD0 D ı0:

(4)
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In particular, the second moment of hij is

Ef jhij j2 g D .1 � pB/

and the variance of hij is

�2hij D v
2
j .1 � pB/Œ1 � .1 � pB/j�j

2�: (5)

The channel block structure induces a natural partition of
matrices in (1). Let Yij be the `T � `W matrix of the received
signal in coherence block .i; j /, and similarly define Hij , Xij ,
and Nij . From (1) it follows that

Yij D Hij ˇ Xij CNij D hijXij CNij :

Vectorizing each block, i.e., defining yij D Vec.Yij / and using
similar notations for Hij, Xij, and Nij, yields yij D hij ˇ
xijCnij D hij xijCnij. Stacking vectors with respect to index
j 2 f1; 2; : : : ;DWg yields

yi D hiˇ xiC ni : (6)

Then, stacking vectors with respect to index i 2 f1; 2; : : : ;DTg

yields
y D hˇ xC n (7)

which is an equivalent vector form of (1).
In general, we assume Ttot � Tcoh and Wtot � Wcoh;

hence, x is transmitted over a large number of coherence
blocks that fade independently conditioned on ai D 1, and
are zero otherwise. The latter case is when blockage occurs.
Blockages are modeled as independent events1 with time scale
Tcoh. Therefore, a random subset of symbols is nulled by
the channel; the average fraction of nulled symbols is pB.
Note that blockage events such that Y D N are exponentially
unlikely as a function of DT since Pf a1 D a2 D � � � D
aTtot=Tcoh D 0 g D p

DT
B .

C. Problem Statement

The noncoherent capacity of the fading channel (1) is [40]

C D
1

Ttot
sup
PX

I.XIY/ nats=s: (8)

The supremum in (8) is over a family of input distributions
satisfying an average power constraint [41]

1

Ttot

K�1X
kD0

L�1X
lD0

Ef jŒX �klj2 g 6 Pt DW PWtot (9)

and a peak power constraint in the form of either amplitude
constraint

jŒX �klj
2 6 ˇ

Pt

Wtot
D ˇP a:s: (10)

or fourth moment constraint

Ef jŒX �klj4 g 6 ˇP 2 (11)

for 0 6 k 6 K � 1, 0 6 l 6 L � 1. We note that:
� Parameters Pt and P are expressed in units of energy

(normalized with respect to the noise spectrum level

1The assumption that blockage events are independent can also be justified
by assuming the presence of an interleaver, which artificially introduces time
diversity.

N0) per unit time and per symbol, respectively. Since
TtotWtot D KL, the average power constraint is equivalent
to kXkF 6 KLP .

� The amplitude constraint can be compactly rewritten as
kXk21 6 ˇP a.s., and it can be also regarded as a
constraint on the support of the input distribution.

� Both peak power constraints are set over time and fre-
quency dimensions, therefore on a per-symbol basis.

� The fourth moment constraint is similar to the constraint
considered in [6], where energy is spread evenly over
degrees of freedom while not bounding the input distri-
bution support.

� A peak constraint related to the fourth moment
constraint is the kurtosis constraint Kurtf ŒX �kl g D
Ef jŒX �klj4 g=Ef jŒX �klj2 g2 6 ˇ. Kurtosis and fourth
moment constraints are not equivalent: in fact, the former
is stricter than the latter.

In the rest of the paper, we denote Pa, Pm and Pf the
family of distributions satisfying average power constraint,
modulus (amplitude) constraint, and fourth moment constraint,
respectively. We denote joint constraints via set intersection,
e.g. the subset of distributions satisfying both average power
constraint and modulus (amplitude) constraint is denoted by
Pa \ Pm. We denote PB

a and PS
a the set of distributions

with average power constraint set over blocks and symbols,
respectively.

III. CAPACITY UPPER BOUNDS

In this section, we present three upper bounds on capacity
in Theorem 1, 2 and 3. The three bounds are specialized to
the case of no absorption in Corollary 1, 2 and 3.

We derive in Theorem 1 an upper bound by neglecting
the peak constraint and providing the channel knowledge to
the receiver. Thus we compute the coherent capacity with
average power constrained inputs, which will prove to be
useful in the high-SNR regime. Then we specialize the result
to the case of no absorption (v1 D v2 D � � � D vDW ) in
Corollary 1. We denote J.P / D Ef log.1 C jgj2P / g, which
is the coherent capacity of a fading channel with coefficient g
when transmitted power is P .

Theorem 1. Consider a block-fading channel with DT time
blocks of dimension `T and DW frequency blocks of dimen-
sion `W. Let the absorption profile be .v1; v2; : : : ; vDW/. Under
the average power constraint, capacity is upper bounded as
follows:

sup
PX2Pa

1

KL
I.XIY/ 6 .1 � pB/

1

DW

DWX
jD1

J.v2j P
?
j / (12)

where fP ?j g is given by statistical waterfilling, i.e. P ?j D
.pj /

C being pj the solution of dJ.v2jpj /=dpj C �pj D 0

and � such that
PDW
jD1P

?
j D DWP .

Proof: See Appendix A. �

In general, J is not available in closed-form, and the power
allocation problem has to be numerically solved. Note that P ?j
is a function of v2j and �, and in turn of fv1; v2; : : : ; vDWg
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and DWP . The optimal power allocation is similar to sta-
tistical waterfilling in MIMO channels without channel state
information at the transmitter [64].
Corollary 1. Let assumptions be the same as in Theorem 1
with no absorption. Capacity is upper bounded as follows:

sup
PX2Pa

1

KL
I.XIY/ 6 Ccoh (13)

where Ccoh D .1 � pB/J.P /.
Proof: In the case of no absorption, the average power

constraint implies P ?1 D P ?2 D � � � D P ?DW
D P , and the

result follows from Theorem 1. �

In Theorem 2 we derive an upper bound by taking into
account the amplitude constraint via supremum splitting [41],
[57]. Then we specialize the result to the case of no absorption
in Corollary 2.
Theorem 2. Consider a block-fading channel with DT time
blocks of dimension `T and DW frequency blocks of dimen-
sion `W. Let the absorption profile be .v1; v2; : : : ; vDW/ and
the blockage probability be pB. Under average power and
amplitude constraints, capacity is upper bounded as follows:

sup
PX2Pa\Pm

1

KL
I.XIY/ 6 .1 � pB/

1

DW

sup
q2Œ0;1�

� DWX
jD1

log.1C v2j P
?
j /

�
qP

`P ısum
log.1C v2j `P

ı
j .1 � j�j

2//

�
(14)

where

fP ıi g
DW
iD1 D argmin

Pj2f0;ˇP g
jD1;2;:::;DW

PDW
jD1 log.1C v2j `Pj .1 � j�j

2//PDW
jD1 Pj

(15)

P ısum D
PDW
jD1P

ı
j (16)

and P ?j D .��1=v
2
j /
C with � such that

PDW
jD1 P

?
j D qDWP .

Proof: See Appendix B. �

Corollary 2. Let assumptions be the same as in Theorem 2
with no absorption. Capacity is upper bounded as follows:

sup
PX2Pa\Pm

1

KL
I.XIY/ 6 CUB;MC (17)

where

CUB;MC D .1 � pB/ sup
q2Œ0;1�

�
log.1C qP /

�
q

ˇ`
log

�
1C ˇ`P.1 � j�j2/

��
: (18)

Proof: The optimum power allocations in Theorem 2 are
given by P ?j D qP and P ıj D ˇP for all j . The former is
derived as in the proof of Corollary 1. The latter is derived by
solving (15) as follows. For notational simplicity, let b D ˇP ,
˛ D `.1 � j�j2/, and n D DW. The right-hand side of (15)
can be simplified as

F.P1; P2; : : : ; Pn/ WD

Pn
jD1 log.1C ˛Pj /Pn

jD1 Pj
(19)

where Pj 2 f0; bg. The minimum of (19) under the constraints
Pj 2 f0; ˇP g for all j can be found by brute force. However,
we can exploit the symmetries of F and check a subset of
n C 1 sequences only. Indeed, the value of F depends on
the number of zero arguments, but not on their position.
For example, F.0; 0; b; b; b; � � �; b/ D F.0; b; 0; b; b; � � �; b/. A
natural choice is to check the set of sequences f.0k ;bn�k/ W
0 6 k 6 ng, where 0k denotes a length-k sequence of zeros
and bn�k a length-.n � k/ sequence of b’s. The sequence
0n can be discarded since the function is decreasing in its
neighborhood. The remaining sequences all yields the same
function value:

F.0k ;bn�k/ D
.n � k/ log.1C ˛b/

.n � k/b
D

log.1C ˛b/
b

: (20)

The proof is completed by choosing .P ı1 ; P
ı
2 ; : : : ; P

ı
n / D bn.

�

In Theorem 3 we consider peak constraint in terms of fourth
moment constraint, and in Corollary 3 the result is specialized
to the case of no absorption.

Theorem 3. Consider a block-fading channel with DT time
blocks of dimension `T and DW frequency blocks of di-
mension `W. Let the absorption profile be .v1; v2; : : : ; vDW/

and the blockage probability be pB. Under average power
and fourth moment constraints, capacity is upper bounded as
follows:

sup
PX2Pa\Pf

1

KL
I.XIY/ 6 .1 � pB/

1

DW

sup
q2Œ0;1�

� DWX
jD1

�
log.1C v2j P

?
j / �

1

DT

DTX
iD1

'. KPij; q/

��
(21)

where

f KPijg D argmin
PijW06Pij6

p
ˇPP

ijPijDDTDWP

DTX
iD1

DWX
jD1

'.Pij; q/; (22)

'.Pij; q/ D
q2P 2ij

`ˇP 2
log

�
1C v2j .1 � j�j

2/
`ˇP 2

qPij

�
(23)

and P ?j D .��1=v
2
j /
C with � such that

PDW
jD1 P

?
j D qDWP .

Proof: See Appendix C.

Corollary 3. Let assumptions be the same as in Theorem 3
with no absorption. Capacity is upper bounded as follows:

sup
PX2Pa\Pf

1

KL
I.XIY/ 6 CUB;FMC (24)

where:

CUB;FMC D .1 � pB/ sup
q2Œ0;1�

�
log.1C qP /

�
q2

`ˇ
log

�
1C .1 � j�j2/

`ˇP

q

��
: (25)

Proof: The result follows from Theorem 3 by deriving
the optimal power allocations when vj D 1 for all j > 1. As
in Corollary 2, we have P ?j D qP . Optimum power allocation
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for KPij in (22) is uniform, i.e., Pij D P for all i and j . In fact,
the problem in (22) is convex because the domain is convex
(a parallelepiped) and the function to be minimized (cf. the
right hand side of eq. (22)) is convex because it is the sum of
convex functions (cf. '.P; q/ in (23), which is convex with
respect to P ). Dropping the inequality constraints in (22) and
using a Lagrange multiplier yield Pij D P ; since this solution
satisfies the inequality constraints, it is also a solution for the
original problem. �

We note that all upper bounds that are presented do not
explicitly depend on `T, DT and `W because the statistics of
the channel are different across frequency blocks but remain
the same across time blocks.

Remark 1 (Infinite-bandwidth capacity limit). Results in
Corollary 2 and 3 have the same expansion (as P ! 0)
up to the first order, which is equal to .1 � pB/j�j

2P . Since
P D Pt=Wtot, capacity is equal to .1 � pB/j�j

2Pt nats/s as
Wtot ! 1. Furthermore, the second order expansion (with
respect to Wtot) shows that capacity is proportional to 1=Wtot
(nats/s). Both results are in line with [6], [41], [48], [49], which
analyze the case pB D 0.

IV. CAPACITY LOWER BOUNDS

We consider independent inputs over different coherence
blocks, which implies I.XIY/ >

PDT
iD1

PDW
jD1 I.XijIYij /

upon application of the chain rule for mutual information and
the Kolmogorov inequality. The average power allocated to
each block can be optimized by following a statistical water-
filling on the basis of the sole knowledge of fv1; v2; : : : ; vDWg

[64]. Achievable rates are derived for the generic block.
Subscripts denoting block indeces are dropped for simplicity,
and we adopt the following compact notation: ξ D Vec.Xij/;
ψ D Vec.Yij/; ν D Vec.Nij/. We denote ξ the generic element
of ξ, and similar notation is adopted for ψ and ν. Hence, we
study the quantity I.ξIψ/ where ψ D hξC ν and h D avg.

This section is organized as follows: we present general
achievable rates derived via information-theoretical considera-
tions in Section IV-A; then we derive the rate achievable with
a practical training-based scheme using truncated-Gaussian
inputs in Section IV-B.

A. General Achievable Rates

We start with the following lemma, which presents an
achievable rate.

Lemma 1. Let input symbols in each coherence block satisfy
average power constraint Ef kξk22 g 6 `P and fourth moment
constraint Ef jξj4 g 6 ˇP 2. Capacity is lower bounded as
follows:

sup
Pξ2PB

a \Pf

1

`
I.ξIψ/ > R.P; �/ (26)

where � denotes the kurtosis of input symbols (cf. Sec-
tion II-C) and

R.P; �/ WD .1 � pB/Œ h.vgξC νjg/ � log.�e/ �

�
1
`

log.1C �2h `P /: (27)

Proof: Using the chain rule and discarding one mutual
information term yields

I.ξIψ/ > I.ξIψjh/ � I.hIψjξ/: (28)

The first term in the right-hand side of (28), I.ξIψjh/, is
the mutual information for the coherent channel. Assuming
independent inputs yields

I.ξIψjh/
.a/
D `.1 � pB/I.ξI vgξC νjg/ (29)
.b/
D `.1 � pB/Œh.vgξC νjg/ � log.�e/�; (30)

where (a) follows from taking the expectation with respect
to a and using the assumption on independent inputs and
(b) follows from the definition of mutual information and
translation invariance of differential entropy. The second term
in the right-hand side of (28), I.hIψjξ/, can be bounded as
follows:

I.hIψjξ/ D h.hξC νjξ/ � h.ν/

.a/
6 Ef log.1C �2h kξk

2
2/ g (31)

.b/
6 log.1C �2h `P / (32)

where (a) follows when h, and in turn hξC ν conditioned on
ξ, are distributed according to a Gaussian distribution, and (b)
follows from Jensen’s inequality. �

In the following theorem, we apply Lemma 1 and a time-
sharing argument [58], where transmission over a fraction �
of coherence blocks only is allowed, while keeping the fourth
moment of input symbols constrained. Note that blocks can
be chosen in time as well as frequency domain.
Theorem 4. Let the assumptions be the same as in Lemma 1.
Capacity is lower bounded as follows:

sup
Pξ2PB

a \Pf

1

`
I.ξIψ/ > sup

�=̌ 6�61
� R.P=�; �=�/: (33)

Proof: We replace the fourth moment constraint with a
kurtosis constraint Kurtf ξ g 6 ˇ, which is stricter. Denote
Pξ the distribution of ξ. In order to derive a lower bound on
capacity, we further restrict ξ to have zero mean. Consider ξ0

distributed according to Pξ0 D .1� �/ı0C �P��1=2ξ for some
� 2 .0; 1�. As a result Vf ξ0 g D Vf ξ g D P irrespective of
� and Kurtf ξ0 g D Kurtf ξ g=� D �=� . Following Lemma 1,
if the rate achievable with Pξ is R.P; �/, the one achievable
with Pξ0 is R0 D �R.P=�; �=�/. The kurtosis constraint is
Kurtf ξ0 g 6 ˇ, hence � > �=̌ in (33). �

In the following corollary we specify the bound of Theo-
rem 4 when ˇ > 2. In this case, Gaussian inputs maximize
the achievable rate in Lemma 1.
Corollary 4. Let assumptions be the same as in Lemma 1 and
ˇ > 2. Capacity is lower bounded as follows:

sup
Pξ2PB

a \Pf

1

`
I.ξIψ/ > CLB (34)

where:

CLB D sup
2=̌ 6�61

� R.P=�/ (35)
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R.P / D sup
�6ˇ

R.P; �/

D.1�pB/Eflog.1C v2jgj2P /g�
log.1C�2h `P /

`
:

(36)

Proof: The differential entropy h.vgξCνjg/ in Lemma 1
is maximized by Pξ D CN.0; P / for ˇ > 2. The result follows
from Theorem 4 with � D 2. �

Remark 2 (Geometric interpretation of the effect of time-shar-
ing on the achievable rate). Since �R.P=�/ nats/symbol can
be rewritten as �WtotR.Pt=.�Wtot// nats/s, the supremum in
(34) with respect to � 2 Œ�0; 1�, where �0 2 .0; 1/, can be
interpreted as follows: any rate achievable with bandwidth
W 0tot 2 Œ�0Wtot; Wtot� is also achievable with bandwidth Wtot
via time-sharing. In particular, with no peak constraint the
rate achievable with bandwidth Wtot is the “running maximum”
rate, i.e., the maximum rate achievable up to bandwidth Wtot.

B. Training-based Scheme with Truncated-Gaussian Inputs

In this section, we focus on the rate achievable via training
with amplitude-constrained inputs. In Subsection 1), we adapt
the exposition in [54] to the model of this paper. Then in
Subsection 2) we derive the rate achievable in the special
case of amplitude-constrained inputs distributed according to
a truncated-Gaussian law, which we define below.

1) Rate achievable with training-based schemes: Following
[54], encoding and decoding are split into a training phase and
a data transmission phase. The following partitions of signal
vectors are considered: ξ D Œ�T� ; ξ

T
d �

T, ψ D ŒψT� ;ψ
T
d �

T, and ν D
ŒνT� ; ν

T
d �

T, where subscripts � and d denote training and data
phases, respectively. Denote `� and `d D ` � `� the number
of symbols devoted to training and data transmission phases,
respectively. Denote ξd and ψd the generic element of ξd and
ψd, respectively. Denote �2d WD Vfξdg and r D kξdk1. An
achievable rate is derived in the following theorem.

Theorem 5. Let input symbols in each coherence block satisfy
average power constraint Ef kξk22 g 6 `P and amplitude
constraint jξj2 6 ˇP almost surely. A training-based schemes
using i.i.d. input symbols yields the following capacity lower
bound:

C� > sup
Pξ d

�2d6Pd; r
26ˇP;P�6ˇP

`�P�C.`�`� /Pd6`P

�
1 �

`�

`

�
I.ξdIψdjOh/: (37)

Proof: See Appendix D. �

In general, I.ξdIψdjOh/ depends on the average and peak
powers per symbol �2d and r2, respectively, and the estimated
channel distribution, which depends on �, v, pout (cf. Sec-
tion II-B) and E� D `�P� . Although (37) may be difficult to
tackle analytically because of the form of I.ξdIψdjOh/, it can
be easily solved numerically.

2) Rate achievable with truncated-Gaussian inputs: We
specify below the rate achievable when truncated-Gaussian
inputs are used in the data transmission phase. The truncated-
Gaussian distribution has density

pr .x/ D
1

Vr;
�.x/1fjxj6rg (38)

where �.x/ is the density of CN.0; / and Vr; is the integral
of �.x/ in Br .0/ D f´ 2 CW j´j 6 rg, given by:

Vr; WD

Z
jxj6r

�.x/ dx D 1 � e�r
2= : (39)

We denote CNr .0; / the truncated-Gaussian distribution in
Br .0/. Hence, ξd is distributed according to CNr .0; /. Note
that �2d is not equal to  : equality holds asymptotically as
r !1, while for fixed r it results

�2d D

Z
jxj6r

jxj2pr .x/ dx D  �
r2e�r

2=

Vr;
: (40)

Therefore, �2d is a monotonically increasing function of 
with supremum given by r2=2. The amplitude constraint (10)
implies that r2 D sup jxj2 < ˇP D ˇ�2d < ˇr2=2: As a
consequence, ˇ < 2 is not achievable with any choice of
.r2; �2d ; /. Moreover, it follows from the amplitude constraint
that r2 6 ˇP , hence  , r , and �2d are not independent. In
particular, by fixing r , we will select  to obtain a given
value of �2d . It can be shown that pr .x/ is the density of the
maximum differential entropy distribution among distributions
with support Br .0/ that satisfy a variance constraint, with
differential entropy given by

h.ξd/ D Ef� logpr .x/ g D log.�e�
2
d =Vr; /: (41)

Special cases of (41) lead to two well known maximum-
entropy distributions:
� r ! 1: Since Vr; ! 1 and �2d !  , (41) reduces

to h.ξ/ D log.�e�2d /, i.e., the differential entropy of a
Complex Normal distribution with variance �2d , which is
the maximum differential entropy distribution under an
average power constraint only.

�  ! 1: Since (41) is monotonically increasing with
respect to  for fixed r , it results sup>0 h.ξ/ D
lim!1 h.ξ/ D log.�r2/, i.e., the differential entropy
of a uniform random variable within the ball of radius r ,
which is the maximum differential entropy distribution
under an amplitude constraint only.

We derive the rate achievable with truncated-Gaussian in-
puts in the following theorem.
Theorem 6. Let input symbols in each coherence block satisfy
average power constraint Ef kξk22 g 6 `P and amplitude
constraint jξj2 6 ˇP a.s. with ˇ > 2. The following rate
is achievable via training and truncated-Gaussian inputs:

Rtr
TG D sup

06`�6`

�
1 �

`�

`

�
ILB.ξdIψdjOh/ (42)

where:

ILB.ξdIψdjOh/ D E Oh�POh

(
log

 


O
�
e�
2
d =

e O�
2
d = O
�
Vr;

Vr; O

!)
(43)
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TABLE II: List of parameters defining different SNR regimes

Notation Variable Case 1 Case 2 Case 3 Unit

R Cell radius 200 200 200 m
r User distance from center 50 150 200 m
pB Blockage probability 0 0:1 0:7 (dimensionless)
� Line-of-sight fraction (0 6 � 6 1) 0:8 0:2 0 (dimensionless)
A Additional attenuation w.r.t. free-space 15 25 30 dB
fc Carrier frequency 73 73 73 GHz
G Antenna gain 15 15 15 dB
P tx

t Transmitted power 30 30 30 dBm
F Receiver noise figure 7 7 7 dB
` Coherence block dimensions 500 500 500 (dimensionless)

�2d D P� D Pd D P (44)

O�2d D �
2
d

 
1 �

jOhj2�2d

jOhj2�2d C �
2
ζd

!
(45)

with �2
ζd
D �2

Qh
Vfξdg C 1, �2

Qh
D �2h =.1C �

2
hE� /, and  and O

satisfying (40) for � D �d and � D O�d, respectively.

Proof: See Appendix E. �

Remark 3 (Asymptotics as r ! 1 and �Qh ! 0). The above
mutual information reduces to known results in some special
cases. In particular, as r ! 1, it results  ! �2d , O ! O�2d ,
Vr; ! 1 and Vr; O ! 1, therefore ILB.ξdIψdjOh/ becomes

lim
r!1

ILB.ξdIψdjOh/ D E
�

log
�
�2d

O�2d

��
D E

(
log

�
1C

jOhj2�2d
�2
Qh
�2d C 1

�)
(46)

as was directly shown in [56]. Moreover, in the limit �2
Qh
! 0,

the channel is perfectly estimated, Oh D h, and (46) specializes
to (the order of limits is inessential):

lim
�Qh!0

lim
r!1

ILB.ξdIψdjOh/ D Ef log.1C jhj2�2d / g (47)

which coincides with the coherent capacity.

V. NUMERICAL EXAMPLES

We consider three cases characterizing different SNR
regimes on the basis of recent mmWave experimental cam-
paigns [31]:
� Case 1 (User near BS): Pt=N0 D 2:09 � 10

9s�1;
� Case 2 (User in typical2 location): Pt=N0 D 2:32�10

7s�1;
� Case 3 (User near cell edge): Pt=N0 D 4:13 � 10

6s�1.
We collect in Table II parameters that are used to produce
the above listed figures of Pt=N0. We assumed N0 D kBT D

4:14 � 10�21 joules, where kB is the Boltzmann constant and
T D 300 kelvin. Values of Pt=N0 can be directly interpreted
as achievable rates in AWGN and fading channels with peak
unconstrained inputs, which have infinite-bandwidth capacity
equal to C1 D Pt=N0 nats/s.

2We will define later in the section the precise meaning of typical.

In the presence of blockages, the maximum achievable rate
without peak constraint is .1 � pB/C1, which numerically
corresponds to approximately 3 Gb/s (Case 1), 30 Mb/s (Case
2), and 1:8 Mb/s (Case 3). In order to keep the number of
parameters as low as possible, we focus on the case of no
absorption. We consider cell radius and user distance from
the center, where the base station (BS) is located, equal to
R and r , respectively. Pathloss PL is derived by adjusting the
free-space pathloss at distance r and carrier frequency fc with
a further attenuation A D A.r; fc/ to match experimental data
[31]:

PL (dB) D 20 log10 rC20 log10 fcC20 log10.4�=c/CA (dB)

where c is the speed of light. Denote P tx
t the transmitted

power, G (dB) the antenna gains, and F the receiver noise
figure. The received power Pt is

Pt (dBm) D P tx
t (dBm)C G (dB) � F (dB) �N0=.1J/ (dB):

Due to propagation and pathloss model, numerical results
plotted on figures are to be intended valid for Wtot � fc,
e.g. Wtot 6 fc=10 � 7:3 GHz (see Table II). In any case,
Wtot 6 fc from physical considerations (nonshaded areas on
figures).

Figures 2 and 3 show rates (Mb/s) as a function of
bandwidth Wtot (Hz) for Case 1 and 2, respectively, with
ˇ D 3. Curves on figure refer to: AWGN upper bound
CAWGN; coherent upper bound Ccoh from eq. (13); capacity
upper bounds with amplitude and fourth moment constraints
from eqs. (17) and (25), respectively, both indicated with
CUB since the difference is not appreciable on plots; capacity
lower bound CLB from eq. (34); rates achievable via training
along with truncated-Gaussian inputs Rtr

TG from eq. (42). In
Fig. 2, the communication system operates in a relatively high-
SNR regime per degree of freedom (e.g. SNR � 3 dB when
Wtot D 1 GHz). The curve corresponding to the capacity
lower bound is almost overlapped with that of the coherent
capacity upper bound. Moreover, the rate achievable by using
training and truncated-Gaussian inputs is shown to be close to
the upper bound. Therefore, it is shown that dense signaling
schemes are sufficient to achieve rates in the order of Gb/s. In
Fig. 3, the user approximately lies on the boundary of a circle
that partitions the cell in two regions with equal area: when
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FIG. 2: Case 1: User near cell center (BS). Rate (Mb/s) as a function of bandwidth Wtot (Hz). Scenario parameters are specified in column
“Case 1” of Table II.
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FIG. 3: Case 2: User in typical location. Rate (Mb/s) as a function of bandwidth Wtot (Hz). Scenario parameters are specified in column
“Case 2” of Table II.
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FIG. 4: Capacity upper bounds (solid line) and lower bounds (dashed line) as a function of bandwidth. (A): different values of LOS component
j�j 2 f0; 0:8g. (B): different block sizes ` 2 f500; 5 � 103g.

users are placed uniformly at random, approximately half of
the users is closer to and the other half farther from the BS than
the user on the boundary. We referred to this location on the
boundary as “typical.” In this case the user is no longer in the
high-SNR regime at bandwidths of interest (e.g. SNR � �16
dB when Wtot D 1 GHz), and the system enters the wideband
regime where the slope of upper and lower bounds on capacity
is negative. Although amplitude-constrained inputs using train-
ing experience a significant rate degradation, upper and lower
bounds are close to each other, and also close to the wideband
capacity. Farther users, such as those described by Case 3,
experience more severe degradation. We do not provide a
figure for Case 3, which is qualitatively similar to Fig. 3: in
this case, the user is located at a distance comparable to the
typical mmWave cell radius, and communication occurs in the
deep low-SNR regime. The wideband capacity is reduced due
to strong attenuation and blockages. Further rate degradation
is experienced by dense signaling schemes: in particular, the
capacity upper bound is much lower in this case than the
wideband capacity without peak constraint.

Fig. 4A shows capacity upper bounds (from (25)) and
lower bounds (from (34)) as a function of bandwidth for
NLOS (j�j D 0) and LOS (j�j D 0:8) scenarios. While
insensitive for sufficiently small bandwidths, rate depends
on the strength of the specular component in the wideband
region. Consistently with the curves on figure, eq. (36) predicts
an achievable rate in the infinite-bandwidth limit equal to
.1 � pB/

2j�j2.log2 e/Pt=N0 bits/s, which corresponds to 0

Mb/s for j�j D 0 and to approximately 17:4 Mb/s for
j�j D 0:8. Similarly, eqs. (17) and (25) predict an upper bound
equal to .1� pB/j�j

2.log2 e/Pt=N0 bits/s, which corresponds
to 0 Mb/s for j�j D 0 and to approximately 19:3 Mb/s for
j�j D 0:8.

Fig. 4B illustrates upper and lower bounds on the ca-
pacity as a function of bandwidth for different block sizes
` 2 f500; 5 � 103g. It is shown that, as the block size `

grows, the wideband regime shifts towards higher bandwidth,
and the width of the transition between the narrowband and
the wideband regimes increases. Bounds are approximately
parallel for a large portion of the wideband regime, until
reaching a value close to the wideband limit, which is not
affected by the block size (upper and lower bounds tend to
1:20 Mb/s and 1:08 Mb/s, respectively).

Fig. 5A shows the critical bandwidth W ?
tot (normalized

with respect to Pt=N0) corresponding to the maximum rate
achievable with Gaussian inputs as a function of the block size,
for NLOS (j�j D 0) and LOS (j�j D 0:8) scenarios. It is shown
that curves are approximately linear in both cases. This be-
havior can be qualitatively explained by noting that the critical
bandwidth W ?

tot lies in the frequency interval where the penalty
term in eqs. (17), (25), and (36) becomes non-negligible as
bandwidth increases, e.g. when `P D `Pt=.WtotN0/ � 1, and
thus W ?

tot is linear with respect to `; it can be interpreted as
the bandwidth on the boundary between high SNR and low
SNR per degree of freedom.

Fig. 5B shows achievable rates with inputs having different
kurtosis, according to (34), as a function of bandwidth. It is
shown that it is possible to push the wideband regime towards
larger bandwidths by using time-sharing, i.e., by transmitting
inputs over a subset of blocks only. We note that the shift is
relatively slow. As kurtosis increases, it is possible to hold the
“running maximum” rate (cf. Remark 2), hence time-sharing
(with no peak constraint) provides a method to achieve a rate
that is a nondecreasing function of bandwidth even when the
channel is noncoherent.

VI. CONCLUSION

This paper investigated the noncoherent capacity of doubly-
dispersive block-fading channels that include essential features
of mmWave propagation, and presented upper and lower
bounds on the capacity as a function of bandwidth, LOS
strength, blockage probability, and coherence block size.
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FIG. 5: (A): Normalized critical bandwidth corresponding to the maximum of the mutual information with Gaussian inputs as a function
of block size, for NLOS (� D 0) and LOS (� D 0:8) scenarios. (B): Achievable rates with Gaussian inputs used on a fraction of
the blocks as a function of the bandwidth. The fraction of blocks where transmissions occur is such that the input distribution has
kurtosis �.

Bounds were derived by leveraging on previous investigations,
in particular [6], [41], which focused on Rayleigh fading.
We showed that rate behaves differently from the Rayleigh
fading case, especially in the wideband regime. In particular,
LOS propagation guarantees a nonzero rate with traditional,
“non-peaky” signaling. We showed that large bandwidth and
severe attenuation can force mmWave systems to operate in
the wideband regime and experience severe rate degradations
from the wideband limit achievable without peak constraint.

We presented numerical results based on recent experi-
mental campaign accounting for a scenario where an outdoor
user is located at different distances from a BS. Aside from
the technological issues of implementing OFDM or similar
systems with several thousand subcarriers [12], “non-peaky”
signaling was confirmed to be nearly capacity-achieving in the
high-SNR regime. This corresponds to the case of a user that
is sufficiently close to the BS to experience a channel with
strong LOS and relatively low attenuation. However, a large
fraction of users is not typically sufficiently close to the BS to
experience such favorable propagation and high SNR. In the
typical setting, NLOS propagation paired with “non-peaky”
signaling was shown to significantly reduce the achievable rate
from the wideband capacity without peak constraint, hence
showing the importance of signaling “peakedness” (sparsity)
for farther users.

Since users can, therefore, experience both high- and low-
SNR per degree of freedom within cells of relatively small
size such as mmWave cells, mmWave communications may
have to support both “non-peaky” (dense) and “peaky” (sparse)
signaling in order to maximize the achievable rate for a given
power expenditure. Indeed, “non-peaky” signaling achieves
rate close to capacity in the strong LOS or high-SNR scenario,
but it is outperformed in the NLOS, low-SNR scenario by
“peaky” signaling. Therefore, the rationale for the signaling
scheme is that the farther the user, the sparser the signaling

must become in order to avoid a significant rate degradation
with respect to the wideband capacity without peak constraint.

APPENDIX A
PROOF OF THEOREM 1

Since inputs are independent on the channel realization, the
derivation at the top of next page holds, where: (a) follows by
considering Gaussian inputs with correlation Rxx WD Ef xx� g;
(b) follows from applying Hadamard’s inequality to hh� ˇ
Rxx, which holds with equality when Rxx is diagonal, i.e.,
when x has independent elements; (c) follows from averaging
with respect to the blockage process and denoting Pijkl WD
Ef jŒxij �klj2 g; (d) follows from the optimal power allocation
fP ?1 ; P

?
2 ; : : : ; P

?
DW
g. In particular, writing the functional

J.P1; P2; : : : ; PDW/D

DWX
jD1

Ef log.1C v2j jgj
2Pj / g C �

DWX
jD1

Pj

(48)
and differentiating with respect to Pj , yields @J =@Pj D

Ef .v2j jgj
2/=.1 C v2j jgj

2Pj / g C � D 0. Denote  .�/ D

Ef 1=.1C �jgj2/ g and let p D p.v; �/ be the solution of
p�1Œ1 �  .vp/� C � D 0. It follows P ?j D P ?j .�/ D

.p.vj ; �//
C with � such that

PDW
jD1P

?
j .�/ D DWP .

APPENDIX B
PROOF OF THEOREM 2

When the receiver has the side information of those coher-
ence times where the channel is blocked, mutual information
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sup
Px

Efkxk2
2
g6KLP

I.xI y/ 6 sup
Px

Efkxk2
2
g6KLP

I.xI yjh/

.a/
D sup

Rxx
trfRxxg6KLP

Eh∼Phf log det.I C hh� ˇRxx/g

.b/
D sup

Efkxk2
2
g6KLP

Eh�Ph

(
DTX
iD1

DWX
jD1

`TX
kD1

`WX
lD1

log.1C jhij j
2 Ef jŒxij �klj2 g/

)
.c/
D .1 � pB/ supP

ijklPijkl6KLP

DTX
iD1

DWX
jD1

`TX
kD1

`WX
lD1

Eg∼Pg
f log.1C v2j jgj

2Pijkl / g

.d/
D .1 � pB/`T`WDT

DWX
jD1

J.v2j P
?
j /

is upper bounded as follows:

I.XIY/ 6 I.XIYja1; a2; : : : ; aDT/

D

DTX
iD1

I.xi I yi jai /

D

DTX
iD1

.1 � pB/I.xi I yi jai D 1/

D .1 � pB/I.xI Ky/

(49)

where Ky D Kh ˇ x C n, and Kh D v ˇ g denotes the channel
vector when a1 D a2 D � � � D aDT D 1. Applying the chain
rule for mutual information yields

sup
Px2Pm

Efkxk2
2
g6KLP

I.xI Ky/

.a/
D sup

Px2Pm
Efkxk2

2
g6KLP

n
I.KyI Kh; x/ � I.KyI Khjx/

o
.b/
D sup

q2Œ0;1�

sup
Px2Pm

Efkxk2
2
gDqKLP

n
I. Khˇ xC nI Khˇ x/

� Ex∼Pxf I.
Khˇ x C nI Kh/ g

o
(50)

where (a) results from the chain rule, and (b) follows from
Khˇ x being a sufficient statistic of . Kh; x/ for Ky and “splitting”
the supremum. The two terms in eq. (50) are bounded below.

1) First term:

sup
Px2Pm

Efkxk2
2
gDqKLP

I. Khˇ xC nI Khˇ x/

.a/
6 sup

Px

Efkxk2
2
gDqKLP

I. Khˇ xC nI Khˇ x/

.b/
6 sup

Pu
trfRxxgDqKLP
RuuDRKhKhˇRxx

I.uC nIu/

.c/
D sup

Rxx;EfxgD0;
trfRxxgDqKLP

log det.I CRxx ˇR Kh Kh/

.d/
D supP

ijklPijklDqKLP

DTX
iD1

DWX
jD1

`TX
kD1

`WX
lD1

log.1C Pijkl Ef jKhijj2 g/

.e/
D DT`

DWX
jD1

log.1C P ?j v
2
j / (51)

where: (a) follows from removing the amplitude constraint;
(b) results from taking the optimum over Kh ˇ x, rather than
x alone, with a given covariance structure; (c) follows from
assigning the differential entropy maximizing distribution to u,
which is multivariate complex Gaussian with Ef x g D 0; (d)
follows from Hadamard’s inequality, which holds with equality
with diagonal Rxx; (e) results from the optimum water-filling
solution to the power allocation problem, i.e., P ?

ijkl
WD .� �

1=v2j /
C DW P ?j with � such that

P
ijkl P

?
ijkl
D `DT

P
j P

?
j D

qKLP .
2) Second term: Denote Khi the channel vector equal to hi

in (6) with ai D 1. The argument of the expectation of the
second term in (50) can be simplified since f KhiW 1 6 i 6 DTg

are independent, and Khi , and in turn KhiˇxiCni , is Gaussian.
Thus

I. Khˇ x C nI Kh/ D
DTX
iD1

I. Khiˇ xiC ni I Khi/

D

DTX
iD1

DWX
jD1

log.1C v2j kxij k
2
2.1 � j�j

2//: (52)

We will find a lower bound of the above expression as a
function of the parameters in the power constraints. We adapt
the idea of [41, eq. (31)] to the block-fading channel, and
bound (52) as follows:

I. Khˇ x C nI Kh/

.a/
>

DTX
iD1

kxik
2
2 inf
kuik

2
16ˇP

PDW
jD1 log.1C v2j kuijk

2
2.1 � j�j

2//

kuik
2
2
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.b/
D

DTX
iD1

kxik
2
2

PDW
jD1 log.1C v2j `P

ı
j .1 � j�j

2//

`P ısum

.c/
D kxk22

PDW
jD1 log.1C v2j `P

ı
j .1 � j�j

2//

`P ısum
(53)

where: (a) follows from taking the infimum over time blocks;
(b) results from fP ı1 ; P

ı
2 ; : : : ; P

ı
DW
g being the power allocation

that achieves the infimum, where P ısum D
PDW
jD1 P

ı
j ; (c)

follows from noting that the infimum does not depend on time
index. It turns out [40] that P ıj is on the boundary of the
possible allocation interval, i.e., either P ıj D 0 or P ıj D ˇP ,
and it depends on the profile .v1; v2; : : : ; vDW/ only.

3) Completing the bound: Using (53) and (51) into (50),
and (50) in (49) yields (14).

APPENDIX C
PROOF OF THEOREM 3

The following lemma is used in the proof of Theorem 3.

Lemma 2. Let a be a nonnegative random variable with mean
m1, and  > 0 and m2 > m21 fixed constants. Then

inf
Ef a gDm1
Ef a2 g6m2

Ef log.1C a/ g D
m21
m2

log
�
1C 

m2

m1

�
(54)

where the infimum is achieved by the two-mass distribution
P ?A D .1 �m

2
1=m2/ı0 C .m

2
1=m2/ım2=m1 .

Proof: Note that the set of distributions satisfying the
constraints is convex and compact. Since Ef log.1 C a/ g is
linear in the distribution of a, denoted by Pa, the minimum
is achieved at the extreme points, hence Pa is a two-mass
distribution [65], i.e., P ?a D .1 � �/ı0 C �ım1=� , � 2 Œ0; 1�.
Hence the problem reduces to the minimization of Ef log.1C
A/ g D � log.1Cm1=�/ with respect to � subject to Ef a2 g D
m21=� 6 m2, i.e., � > m21=m2. Since the objective function
is increasing in � , the optimal solution is achieved by � D
m21=m2. �

Proof of Theorem 3: The proof is similar to that of
Theorem 2, the different step lying in the lower bound of
I.KyI Khjx/ under the different peak constraint, as specified on
the top of the next page, where (a) follows from splitting the
infimum and noticing that the fourth moment constraint is set
elementwise, (b) is obtained by relaxing the fourth moment
constraint on a per-block basis as detailed below, and (c)
follows from Lemma 2. The relaxation is as follows:

Ef kxij k42 g D
X
kl

X
k0l 0

Ef jŒxij �klj2jŒxij �k0l 0j2 g

.a/
6
X
kl

X
k0l 0

Ef jŒxij �klj4 g1=2 Ef jŒxij �k0l 0j4 g1=2

.b/
6
X
kl

X
k0l 0

ˇP 2 D `2ˇP 2

where (a) follows from the Cauchy-Schwarz inequality,
and (b) from the fourth moment constraint. Finally, since
Ef jŒxij �klj2 g2 6 Ef jŒxij �klj4 g 6 ˇP 2, then Ef kxij k22 g DP
kl Ef jŒxij �klj2 g 6 `

p
ˇP . �

APPENDIX D
PROOF OF THEOREM 5

The average power constraint is Ef kξk22 g D `�P�C`dPd 6
`P . We detail below the two phases.

1) Training phase: Receiver estimates the channel coeffi-
cient h from the observations of the signal received upon
transmission of the sequence �� :

ψ� D h�� C ν: (59)

The LMMSE estimate of h is [54]:

Oh D w�� .ψ� � Efψ� g/C Ef h g; (60)

where:

w�� D Chψ�C
�1
ψ�
; (61)

Chψ� D �
2
h �

�
� ; (62)

Cψ� D �
2
h ���

�
� C I : (63)

In general, h is nonzero-mean, which makes the estimator
expression different from that in [54]. Rearranging terms
in w�� and using the matrix inversion lemma yields

w�� D
�2h

1C �2hE�
��� (64)

where E� D k��k2. We assume that �� is a sequence of
antipodal symbols with amplitude

p
P� , hence the peak

power constraint during the training phase reads P� 6
ˇP . Denote h0 WD h � Ef h g. The estimate (60) can be
rewritten as

Oh D
�2h

1C �2hE�
��� .h0�� C ν� /C Ef h g

D ˛h0 C ζ� C Ef h g (65)

where ζ� ∼ CN.0; �2
ζ�
/, with �2

ζ�
D ˛2=E� and ˛ D

�2hE�=.1C �
2
hE� /. Let the true channel coefficient h be

the sum of the estimated channel Oh and the error Qh:

h D OhC Qh: (66)

Given the distribution of the true channel (cf. (4)), it
follows that:

POhjaD0 D �.1�˛/Efhg; �2
ζ�

(67)

POhjaD1 D �1�.1�˛/pB
1�pB

Efhg; ˛2v2.1�j�j2/C�2
ζ�

(68)

POh D pBPOhjaD0 C .1 � pB/POhjaD1: (69)

It can be shown that the variance of Oh and Qh are related
as follows: �2

Oh
C �2

Qh
D �2h , �2

Qh
D �2h =.1C �

2
hE� /.

2) Data transmission phase: The received signal during
this phase is

ψd D hξd C νd D Ohξd C ζd; (70)

where ζd D
Qhξd C νd. The following lower bound to the

capacity of any training scheme is derived in [54]:

C� D sup
Pξd

Efkξdk
2
2
g6`dPd

kξdk
2
16ˇP

1

`
I.ξdIψdj

Oh/ (71)
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inf
Px2Pf

Efkxk2
2
gDDTDW`qP

Ef I. Khˇ xC nI Kh j x/ g (55)

.a/
D inf

Pij>0P
ijPijDDTDWP

DTX
iD1

DWX
jD1

inf
Pxij
2Pf

Efkxij k22gD`qPij

Ef log.1C v2j .1 � j�j
2/kxij k

2
2/ g (56)

.b/
> inf

06Pij6
p
ˇPP

ijPijDDTDWP

DTX
iD1

DWX
jD1

inf
Pxij

Efkxij k22gD`qPij
Efkxij k42g6`

2ˇP 2

Ef log.1C v2j .1 � j�j
2/kxij k

2
2/ g (57)

.c/
D inf

06Pij6
p
ˇPP

ijPijDDTDWP

DTX
iD1

DWX
jD1

q2P 2ij

ˇP 2
log

�
1C v2j .1 � j�j

2/
`ˇP 2

qPij

�
(58)

expressed in bits per symbol.

The result follows from (71) by assuming i.i.d. inputs.

APPENDIX E
PROOF OF THEOREM 6

We write ψd D Ohξd C ζd, where ζd is a noise that is
uncorrelated with Ohξd and

Vfζdg D �
2
Qh
Vfξdg C 1 DW �

2
ζd
:

Rewrite mutual information I.ξdIψdjOh/ as

I.ξdIψdjOh/ D E Oh∼POhf h.ξd/ � h.ξdjψd; Oh/ g (72)

where h.ξdjOh/ D h.ξd/ since ξd and Oh are independent. Since
the distribution of ξd conditioned on ψd and Oh is difficult to
find, we bound h.ξdjψd; Oh/ with the maximum entropy over
distributions with support Br .0/ and variance Vf ξd jψd; Oh g.
Since (41) is a monotonically increasing function of the
variance, any upper bound to the variance yields an upper
bound on the differential entropy. It is a general fact [54] that

Vf ξd j ψd; Oh g 6 Ef jξd � Oξdj
2
j Oh g DW O�2d (73)

for any estimation Oξd of ξd. Choosing the LMMSE yields (45).
Therefore, h.ξdjψd; Oh/ is upper bounded by the differential
entropy of the distribution CNr .0; O/:

h.ξdjψd; Oh/ 6 log
�
� O e O�

2
d = O Vr; O

�
: (74)

Introducing (41) and (74) in (72) results in:

I.ξdIψdjOh/ > ILB.ξdIψdjOh/: (75)
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