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Abstract— Spectral efficiency of low-density spreading non-
orthogonal multiple access channels in the presence of fading is
derived for linear detection with independent decoding and opti-
mum decoding. The large system limit, where both the number
of users and number of signal dimensions grow with fixed ratio,
called load, is considered. In the case of optimum decoding, it is
found that low-density spreading underperforms dense spreading
for all loads. Conversely, linear detection is characterized by
different behaviors in the underloaded versus overloaded regimes.
In particular, it is shown that spectral efficiency changes smoothly
as load increases. However, in the overloaded regime, the spectral
efficiency of low-density spreading is higher than that of dense
spreading.

Index Terms— Spectral efficiency, multiple access channels,
non-orthogonal multiple access (NOMA).

I. INTRODUCTION

WHILE expected to be standardized by the year 2020,
the fifth generation (5G) currently receives consid-

erable attention from the wireless community [1]. Massive
multiple-input multiple-output (MIMO), mm-wave commu-
nications, ultra-dense networks, and non-orthogonal multiple
access (NOMA) are four promising technologies, that are
expected to address the targets of 5G wireless communica-
tions, including high spectral efficiency, massive connectivity,
and low latency [2], [3].
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Back to the history of cellular communications from
1G to 4G, the radio multiple access schemes are mostly
characterized by orthogonal multiple access (OMA), where
different users are assigned to orthogonal resources in either
frequency (frequency-division multiple access (FDMA) and
orthorgonal FDMA (OFDMA)), time (time-division multiple
access (TDMA)) or code (synchronous code-division multiple
access (CDMA) in underloaded condition) domains. However,
5G multiple access is required to support a wide range of
use cases, providing access to massive numbers of low-power
internet-of-thing (IoT), as well as broadband user terminals
in the cellular network. Providing high spectral efficiency,
while minimizing signaling and control overhead to improve
efficiency, may not be feasible to achieve by OMA tech-
niques [4]. In fact, the orthogonality condition can be imposed
as a requirement only when the system is underloaded, that
is, when the number of active users is lower than the number
of available resource elements (degrees of freedom or
dimensions).

The idea of NOMA is to serve multiple users in the
same band and abandon any attempt to provide orthogonal
access to different users as in conventional OMA. Orthog-
onality naturally drops when the number of active users
is higher than the number of degrees of freedom, and
“collisions” appear. One possible way of controlling col-
lisions in NOMA is to share the same signal dimension
among users and exploit power (power-domain NOMA (PDM-
NOMA)) vs. code (code-domain NOMA (CDM-NOMA))
domains [2]. In PDM-NOMA, it uses superposition coding,
a well-known non-orthogonal scheme for downlink trans-
missions [5], and makes superposition decoding possible by
allocating different levels of power to different users [6]. The
“near” user, with a higher channel gain, is typically assigned
with less transmission power, which helps making successive
interference cancellation (SIC) affordable at this user [7].
In CDM-NOMA, it is characterized by different dialects,
such as low-density spreading CDMA (LDS) [8]–[10], low-
density spreading orthogonal frequency-division multiplexing
(LDS-OFDM) [11], sparse code multiple access (SCMA) [12],
pattern division multiple access (PDMA) [13], and multi-
user shared access (MUSA) [14]. As a matter of fact,
CDM-NOMA variants enable flexible resource allocation,
and reduce hardware complexity by relaxing orthogonality
requirements.

In this work, we focus on LDS. As a typical variant
of CDM-NOMA, LDS inherits all above advantages and
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will be shown later in this paper to obtain increased system
throughput compare to conventional CDMA, particularly in
massive communications. LDS, therefore, may be appropri-
ately fit to IoT scenario [2] and is also considered as a
potential candidate for uplink machine-type-communications
(mMTC) [2]. Conventional direct-sequence CDMA (DS) is
based on the spread spectrum technique, that uses spread-
ing sequences to spread the signal over a given bandwidth.
In traditional CDMA, signal dimensions, also known as chips
(the terminology stemmed from the chip-rate of the sample),
are all filled in with nonzero values, making the structure
of DS be a form of “dense spreading” with nonzero values
commonly binary or spherical [15]. The idea of LDS is to use
spreading sequences that are the sparse counterparts of the
dense spreading sequences of conventional CDMA; a fraction
only of the dimensions is filled with nonzero entries [8].
The same concept of LDS can be found in [16] within the
framework of time hopping CDMA, where time hopping and
chips are mapped to frequency hopping and subbands, respec-
tively. Specifically, the analysis therein can be considered as
a reference for LDS in terms of information theoretic bounds.

On the other hand, the massive connectivity of 5G wireless
communications is modeled by letting the number of devices
to be much larger compared to the number of degrees of
freedom. The behavior of DS with random spreading was
analyzed in the large system limit, where the number of users
and dimensions go to infinity with same scaling, in pioneer-
ing works of Tse and Hanly [17], Tse and Zeitouni [18],
Verdú and Shamai [15], and Shamai and Verdú [19]. Sub-
sequently, LDS was similarly analyzed in [16] in the case of a
channel without fading. There has been no investigation of the
effect of frequency-flat fading so far on the spectral efficiency
of LDS.

Therefore, the goal of this paper is to fill the gap by
investigating LDS within the information theoretic framework
considered in [15], [16], and [19] in the presence of frequency-
flat fading. We analyze fundamental limits in the large system
limit when the number of simultaneous transmissions becomes
large with respect to the number of degrees of freedom.

A. Other Related Work

Based on the scaling between the number of users
and number of degrees of freedom, other related works
beyond those mentioned so far investigated either large-scale
systems [20]–[22] or small-scale systems [8]–[10]. The two
different regimes require asymptotic derivations (as the num-
ber of users and degrees of freedom grow with same scaling)
and non-asymptotic derivations (for finite values of the number
of users and degrees of freedom), respectively. The aforemen-
tioned literature is detailed as follows:

1) Large-Scale System: Most of prior works [21], [22] on
LDS in the large system limit was derived by means of the
replica method, which was first used for DS by Tanaka [23].
Since the replica method is not rigorous, Tanaka’s capacity
formula was verified (up to a given load, called spinodal,
approximately equal to βs ≈ 1.49) in the large system
limit by Montanari and Tse [20], where random spreading
with sparse sequences was used in the proof, jointly with

belief propagation detection. Adopting the replica method,
Raymond and Saad [21] and Yoshida and Tanaka [22] ana-
lyzed binary sparse CDMA in terms of spectral efficiency with
different assumptions on the sparsity level (i.e., the number
of nonzero entries) NS of signatures (in particular, NS is a
deterministic finite value in [21], whereas NS is a Poissonian
random variable in [22]).

2) Small-Scale System: Recent investigations [8]–[10] ana-
lyzed LDS with finite values for the number of users and
signal dimensions, in the overloaded regime, where the num-
ber of users exceeds the number of dimensions. In [8],
each user spreads data over a small number of dimensions
(e.g., NS = 3) with other dimensions being zero padded. The
resulting spreading sequence for each user is then interleaved
such that the signature matrix from all K users appears to be
very sparse. The analysis focused on the bit error rate for dif-
ferent receiver structures. A comparison with different received
powers was also described to address the near-far problem.
Using the same framework proposed in [8], an information
theoretic analysis of LDS with fading was presented in [9] for
a bounded numbers of active users. In particular, the capacity
region of time-varying fading LDS channel was analytically
determined and tested by simulation, given different sparsity
levels and different maximum number of users per dimension.

B. Approach and Contribution

In this paper, we extend the information theoretic framework
of time- and frequency-hopping CDMA considered in [16] for
LDS in the presence of frequency-flat fading along the lines
of [19]. In [16], the reference channel is the additive white
Gaussian noise (AWGN) channel: in order to apply some of
the result derived in [16] in an IoT setting, it is mandatory
to extend the analysis to channels with fading. We propose
an information theoretic analysis where achievable spectral
efficiency with different receiver structures is derived for the
case of sparse signatures (NS = 1), and compare our results
to the spectral efficiency of direct-sequence (DS) CDMA,
which represents the archetypal example of dense spreading
(NS = N ), under the same input constraints such as energy
per symbol and bandwidth [19].

The major contributions of this paper are as follows:
• A rate achievable with linear detection is derived in

Theorem 1 in closed form. It is possible to show that
sparse signaling outperforms dense signaling when the
network is overloaded (K > N ) and that the effect of
fading is to slightly increase the achievable rate in this
region.

• The spectral efficiency with optimum detection is derived
in Theorem 3 in closed form. It is possible to show
that dense signaling outperforms sparse signaling in this
setup.

• The spectral efficiency with optimum detection is derived
by finding the limiting spectral distribution of a matrix
ensemble that jointly describes spreading and fading: this
is a mathematical result of independent interest. The com-
binatorial structure of the moments of such distribution
is compared to the combinatorial interpretations available
for the case of LDS and DS without fading.
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• The spectral efficiency with optimum detection in the
large system limit also validates the decoupling principle
in the CDMA literature, showing its equivalence to the
average rate of a set of parallel channels. Intuitively,
the multiuser low-density NOMA with optimum detection
may be interpreted as a bank of channels, where each
channel experiences an equivalent single-user channel.

• The results provide an insight into the design of signaling
in dense networks. As envisioned in the IoT setting, many
simple transceivers will be part of large networks: results
in this paper suggest that, in the uplink of such networks,
sparse signaling can achieve a rate several times larger
than that achievable via dense signaling.

C. Organization

The paper is organized as follows. Section II introduces
the reference model for LDS based on the general framework
of traditional DS with the same energy and bandwidth con-
straints. The most important results in the literature relevant
to our analysis are recalled in Section III. Achievable spectral
efficiency of LDS with linear and optimum receivers are
presented in Section IV. Finally, conclusions based on the
comparison of fundamental limits of LDS in 5G network are
drawn in Section V.

Notation: Expectation operator is denoted �. We denote [N ]
the set of integers {1, 2, . . . , N}. en

i with i ∈ [n] stands for the
ith vector of the canonical basis of �n. The jth element of a
vector v is denoted by [v]j . Kronecker delta is denoted by δij ,
hence δij = 1 if i = j and δij = 0 otherwise. If the base is not
explicited, log means natural logarithm. Complex conjugation
and hermitian transposition are denoted by ∗. Convergence in
probability of a sequence of random variables (Xn)n≥0 to

X is denoted by Xn
P−→X .

II. REFERENCE MODEL

The proposed reference model of a LDS system in the pres-
ence of frequency-flat fading follows the traditional discrete
complex-valued CDMA model

y = SAb + n, (1)

where: y ∈ �
N is the received signal; b = [b1, . . . , bK ]T ∈

�
K is the vector of symbols transmitted by the K users; S =

[s1, . . . , sK ] ∈ �
N×K is a random spreading matrix, column i

being the unit-norm spreading sequence of user i; A ∈ �
K×K

is a diagonal matrix of complex-valued fading coefficients
diag(a1, . . . , aK); and n ∈ �

N is a circularly symmetric
Gaussian vector with a zero mean and covariance N0I. Users
transmit independent symbols and obey the power constraint
�[|bk|2] � E for all k, hence

�[bb∗] = EI. (2)

The load of the system is defined as the ratio between the
number of users K and the number of dimensions N , and is
denoted by β := K/N . Systems with β < 1 and β > 1
are referred to as underloaded and overloaded systems,
respectively.

Both LDS and DS systems can be modeled by (1) with
sparse and dense spreading matrix S, respectively. In the
simplest models, all elements of S are nonzero in DS, e.g.
ski ∈ {±1/

√
N}, while all but one element per column is

nonzero in LDS, i.e. sk ∈ {±eN
i }i=1,...,N . For the sake of

clarity, we define rigorously below what we mean by sparse
vector and sparse matrix.

Definition 1 (Sparse Vector): A vector v ∈ �
N is

NS-sparse if the cardinality of the set of its nonzero elements
is NS, i.e. ‖v‖0 := |{vi �= 0}i=1,...,N | = NS.

Definition 2 (Sparse Matrix): A matrix S = [s1, . . . , sK ]
is NS-sparse if each column sk is an NS-sparse vector.

A reference model for time- and frequency-hopping CDMA
was presented in [16] building on the seminal paper [15].
The present work extends the model of [16] by introducing
fading along the lines of [19]. Notice that the assumption
underpinning the fading model is that fading coefficients do
not change over the whole signature, and more generally over
the whole coherence block. This assumption may seem to
clash with the pursued large system analysis since the latter
requires increasingly large signatures. However, notice that
the large system limit is only used to derive closed form
expressions of performance of interest: It is well known that
results derived in the large system limit are in fact very good
approximations of performance of finite systems. The only
important assumption is to keep the same load β in the finite
system and in the large system.

In the following, we consider the very sparse scenario
corresponding to sparse matrices with 1-sparse column
vectors. In this case, each spreading sequence sk contains only
one nonzero element, equal to either +1 or −1, with equal
probability. Hence, the energy of the sequence is concentrated
in just one nonzero pulse, while in DS, the energy is uniformly
spread over all N dimensions.

System performance is measured by spectral efficiency C,
defined as the total number of bits per dimension, that can be
reliably transmitted [15], [16], [19]. The per-symbol signal-to-
noise ratio (SNR) is given by [24]

γ :=
1
K�[‖b‖2]
1
N �[‖n‖2]

=
N

K
· b

N
· Eb

N0
=

1
β
· C · η, (3)

where C = b/N is expressed in bits per dimension, b is the
number of bits encoded in b, �[‖b‖2] = bEb, �[‖n‖2] =
NN0, and η := Eb/N0.

III. PREVIOUS RESULTS

In this section, we summarize the results in the literature that
are most relevant to our analysis, namely spectral efficiency
for LDS without fading and spectral efficiency of DS with and
without fading.

1) Spectral Efficiency in the Absence of Fading for LDS and
DS: The model in (1) reduces to that in [16] when A = I
(no fading). Optimum decoding with LDS achieves the fol-
lowing spectral efficiency:

C
opt
lds (β, γ) =

∑

k≥0

βke−β

k!
log2(1 + kγ) bits/s/Hz. (4)



LE et al.: FUNDAMENTAL LIMITS OF LOW-DENSITY SPREADING NOMA WITH FADING 4651

Spectral efficiency with DS is [15], [19]

Copt
ds (β, γ) = β log2

(
1 + γ − 1

4
F(γ, β)

)

+ log2

(
1 + βγ − 1

4
F(γ, β)

)

− 1
4 log 2

· F(γ, β)
γ

bits/s/Hz, (5)

where

F(x, z) =
(√

x(1 +
√

z)2 + 1 −
√

x(1 −√
z)2 + 1

)2

.

(6)

Linear detectors, such as single-user matched filter (SUMF),
zero-forcing (ZF), and minimum mean square error (MMSE),
result in the same mutual information with LDS. An achiev-
able spectral efficiency for these multiple access channels is
Rsumf

lds = βI(b1; r1|S) (b/s/Hz) with b Gaussian and S sparse,
where I(b1; r1|S) is the achievable rate (bits/symbol) of
user 1:

Rsumf
lds (β, γ) = Rzf

lds(β, γ) = Rmmse
lds (β, γ)

= β
∑

k≥0

βke−β

k!
log2

(
1 +

γ

kγ + 1

)
bits/s/Hz.

(7)

Differently from LDS, linear detectors with DS achieve dif-
ferent spectral efficiency. Among the above mentioned linear
detectors, MMSE achieves the highest spectral efficiency,
which is equal to [15]

Cmmse
ds (β, γ) = β log

(
1 + γ − 1

4
F(γ, β)

)
. (8)

2) Spectral Efficiency in the Presence of Fading for DS:
In the presence of fading, spectral efficiency with optimum
decoding is [19]

Copt
ds (β, γ) = Cmmse

ds (β, γ) +
η − 1 − log η

log 2
(9)

where η > 0 satisfies the following fixed point equation

η = 1 − β + β �

[
1

1 + η|a|2γ
]

, (10)

and Cmmse
ds (β, γ) is spectral efficiency with MMSE, given by

Cmmse
ds (β, γ) = β �[ log2(1 + γ|a|2η)]. (11)

It is noteworthy that fading increases spectral efficiency
with MMSE at high load. The intuition provided in
[19, Sec. III-C] is that some user appears very low-powered
at the receiver, thus the “interference population,” i.e., the
number of effective interferers is reduced. A similar behavior
is not observed with ZF, which removes all interference irre-
spective of power. This effect is called “interference population
control.”

IV. SPECTRAL EFFICIENCY OF LDS WITH

FREQUENCY-FLAT FADING

In this section, we derive spectral efficiency with a bank
of single-user matched filters and independent decoding in
Section IV-A and with optimum decoding in Section IV-B.

A. Single-User Matched Filter (SUMF)

The decision variable for user 1 is

r1 = sT
1 y

= sT
1

(
K∑

k=1

skakbk

)
+ sT

1 n

= a1b1 +
K∑

k=2

sT
1 skakbk + sT

1 n, (12)

where the last step follows from the signatures being unit
norm. Assuming Gaussian coding, bk ∼ N�(0, E), the con-
ditional mutual information (bits/symbol) for user 1 is

I(r1; b1|S, A) = I(y1; b1|ρ12, . . . , ρ1K , a1, . . . , aK)

= �

[
log2

(
1+

|a1|2γ
1+γ

∑K
k=2 ρ2

1k|ak|2

)]
,

(13)

where ρ1k := sT
1 sk and the expectation is taken with respect to

{ρ12, . . . , ρ1K} and {a1, . . . , aK}. The corresponding mutual
information of the multiuser channel is

Rsumf
lds (β, γ) := βI(r1; b1|S, A) bits/s/Hz.

In the following theorem we propose an explicit form of (13)
for 1-sparse matrices (cf. Definition 2).

Theorem 1: Let S ∈ �
N×K be a 1-sparse spreading matrix.

In the large system limit, the following rate is achievable with
a bank of SUMF detectors:

Rsumf
lds (β, γ) =

β

log 2

∫ 1

0

e−t(β+ 1
1−t · 1

γ )

1 − t
dt bits/s/Hz. (14)

Proof: See Appendix A. �
The result in Theorem 1 allows us to study asymptotics

for low and high SNR. In the low-SNR regime, the minimum
energy per bit per noise level is given by (see Appendix B for
the proof)

ηmin = lim
γ→0

βγ

Rsumf
lds (β, γ)

= log 2 dB, (15)

as in the case without fading, and with fading and dense
spreading. Note that (15) holds for any β > 0. The slope
at η = ηmin is (see Appendix C for the proof)

S sumf
0 = 2 log 2 lim

γ→0

(
∂
∂γ Rsumf

lds

)2

− ∂2

∂γ2 Rsumf
lds

=
β

1 + β
bits/s/Hz/(3 dB),

(16)

that is the same slope achieved with dense signaling. In the
high-SNR regime, rate grows logarithmically with high-SNR
slope equal to (see Appendix D for the proof)

S sumf
∞ = log 2 lim

γ→∞γ
∂Rsumf

lds

∂γ
= βe−β bits/s/Hz/(3 dB),

(17)

which is the same as LDS without fading, and, compared with
the high-SNR slope achieved by DS with MMSE,

Smmse
∞,ds = β�{β∈[0,1)} +

1
2
�{β=1} + 0�{β>1}, (18)

shows that, for β > 1, LDS is preferable to DS.
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Fig. 1. Achievable spectral efficiency (bits/s/Hz) of LDS with SUMF detection (thick lines) and DS with MMSE detection (thin lines with marks) for several
values of η as a function of the load in the presence (dark shade) or absence (light shade) of fading.

Figure 1 shows the achievable spectral efficiency with linear
detection, and compares DS and LDS in the presence and
absence of fading. In the presence of fading, the same qualita-
tive phenomenon observed without fading holds, namely LDS
outperforms DS, when load is approximately higher than unity.
We stress that the curves for DS are capacities whereas the
curves for LDS are merely achievable rates, and that this is
sufficient to claim that LDS outperforms DS in the overloaded
regime. The gap in performance with and without fading
follows the same pattern for both DS and LDS, namely rates
are decreased in the underloaded regime and increased in the
overloaded regime. Finally, we notice that both LDS and DS
are characterized by the same slope at β = 0 and the same
asymptotic value as β → ∞.

B. Optimum Decoding

The spectral efficiency achieved with optimum decoding is
the maximum (over the distributions on b) normalized mutual
information between b and y knowing S and A, which is
given by [19] and [25]

Copt
N (β, γ) =

1
N

log2 det(I + γSAA∗S∗). (19)

We can express (19) in terms of the set of eigenvalues of
the Gram matrix SAA∗S∗, {λn(SAA∗S∗) : 1 ≤ n ≤ N},
as follows:

Copt
N (β, γ) =

∫ ∞

0

log2(1 + γλ) dFSAA∗S∗
N (λ), (20)

being FSAA∗S∗
N (x) the empirical spectral distribution (ESD)

of SAA∗S∗, namely [26], [27]:

FSAA∗S∗
N (x) :=

1
N

N∑

n=1

�{λn(SAA∗S∗)≤x}. (21)

Being S and A random, also FSAA∗S∗
N is random. In the large

system limit, as is well known, the ESD can admit a limit
(in probability or stronger sense), which is called limiting
spectral distribution (LSD) [27] and is denoted by F (x).
Hence, if the limit exists, spectral efficiency Copt

N (γ) converges
to

Copt(β, γ) =
∫ ∞

0

log2(1 + γλ) dF (λ) . (22)

Our main goal is, therefore, to find the LSD of the matrix
ensemble {SAA∗S∗}. To this end, we compute in Theorem 2
the average moments of the ESD in the large system limit and
prove convergence in probability of the sequence of (random)
moments of the ESD,

mL :=
1
N

tr(SAA∗S∗)L =
∫ ∞

0

λL dFSAA∗S∗
N (λ), (23)

to the (nonrandom) moments of the LSD. Then, by verifying
Carleman’s condition, Lemma 1 shows that these moments
uniquely specify the LSD [28]. Finally, we use the LSD
to derive the spectral efficiency in the large system limit
in Theorem 3.

Theorem 2: Given the matrix ensemble {SAA∗S∗} with
S an N×K sparse spreading matrix and A a K×K diagonal
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TABLE I

SUMMARY OF LSDS, MOMENTS, AND THEIR COMBINATORIAL STRUCTURE FOR DIFFERENT SCENARIOS WITH AND WITHOUT FADING

Fig. 2. Achievable spectral efficiency (bits/s/Hz) of LDS (thick lines) and DS (thin lines with marks) with optimum decoding for several values of η as a
function of the load in the presence (dark shade) or absence (light shade) of fading.

matrix of Rayleigh fading coefficients, it results

mL
P−→ m̄L :=

L∑

l=1

⌊
L
l

⌋
βl, (24)

where
⌊

L
l

⌋
:=

(
L−1
l−1

)
L!
l! denotes the Lah numbers [29].

Proof: See Appendix E. �
In particular, m̄L is the Lth moment of the random variable∑J
j=1 Zj where J is distributed according to a Poisson law

with mean β and, conditionally on J , {Zj : 1 ≤ j ≤ J} is
a set of i.i.d. exponentially distributed random variables with
unit rate.

In the following lemma, we verify that the LSD is uniquely
determined by the sequence of moments (m̄L)L≥1.

Lemma 1: The sequence of moments (m̄L)L≥1 satisfies
the Carleman’s condition, namely the series

∑
k≥1 m̄

−1/(2k)
2k

diverges.
Proof: See Appendix F. �

Therefore, Theorem 2 and Lemma 1 imply that the prob-
ability measure F (λ) in (22) is the probability measure
of a compound Poisson distribution generated by the sum
of a mean-β Poissonian number of unit-rate exponentially

distributed random variables:

F (dλ) = e−βδ0(dλ) +
∑

k≥1

e−ββk

k!
· e−λλk−1

(k − 1)!
dλ . (25)

The spectral efficiency in the large system limit is thus given
by the average rate experienced through a set of parallel
channels, indexed by k = 1, 2, · · · , with signal-to-noise ratio
equal to λγ, used with probability (e−ββk/k!) · (e−λλk−1/
(k − 1)!) dλ. Indeed, this observation may validate the claim
by Guo and Verdú that in the large system limit, the CDMA
channel followed by multiuser detection can be decoupled
into a bank of parallel Gaussian channels, each channel
per user [30]. This is referred to as decoupling principle,
which leads to the convergence of the mutual information of
multiuser detection for each user to that of equivalent single-
user Gaussian channel as the number of users go to infinitive,
given the same input constraints. Given that the randomness
of ESD vanishes in the large system limit (cf. Theorem 2),
one may invoke the “self-averaging” property in the statistical
physics [30]. Similarly to CDMA, the self-averaging principle
yields to the strong property that for almost all realizations
of the spreading sequences and noise of low-density NOMA,
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Fig. 3. Achievable spectral efficiency (bits/s/Hz) of LDS (thick lines) and DS (thin lines with marks) with optimum detection as a function of η (dB) with
load β = 1 in the presence (dark shade) or absence (light shade) of fading.

the macroscopic quantity (spectral efficiency in this case)
converges to an equivalent deterministic quantity in the large
system regime.

Theorem 3: The spectral efficiency with optimum decoding
in the large system limit is given by

Copt(β, γ)=
∑

k≥1

e−ββk

k!

∫ ∞

0

e−λλk−1

(k − 1)!
log2(1 + γλ) dλ .

(26)

Proof: Plug (25) into (22) and commute summation and
integration, which is follows from Tonelli’s theorem. �

Similarly to the previous section, it is interesting also here
to study the asymptotic behavior of spectral efficiency as a
function of η. In the low-SNR regime, the minimum energy
per bit per noise level is given by (see Appendix G for the
proof)

ηmin = lim
γ→0

βγ

C
opt
lds (β, γ)

= log 2 dB, (27)

as in the case without fading, and with fading and dense
spreading, irrespective of β > 0. The slope at η = ηmin is
(see Appendix H for the proof)

S opt
0 = 2 log 2 lim

γ→0

(
∂
∂γ Copt

lds

)2

− ∂2

∂γ2 Copt
lds

=
2β

β + 2
bits/s/Hz/(3 dB),

(28)

which is the same as with dense signaling in the presence of
fading (cf. (147) in [19]). In the high-SNR regime, rate grows
logarithmically with high-SNR slope equal to (see Appendix I

for the proof)

S opt
∞ = log 2 lim

γ→∞γ
∂Copt

lds

∂γ
= 1 − e−β bits/s/Hz/(3 dB), (29)

which is the same as without fading.
Figure 2 shows the achievable spectral efficiency with

optimum decoding and compares DS and LDS, in the presence
and absence of fading. It is shown that, in general, LDS
underperforms DS irrespective of fading; however, the main
gap is concentrated around β = 1, and decreases as load goes
either to 0 or ∞.

We conclude this section by highlighting the combinatorial
connection between the moments found in Theorem 2 and
moments of the Marc̆enko-Pastur and Poisson laws (see also
Table I), which correspond to the limiting spectral distrib-
utions of dense [15] and sparse [16] schemes, respectively.
We showed that the Lth moment is essentially a polynomial
in β with coefficients equal to Lah numbers. Similar results
hold for dense and sparse schemes without fading, where
Lah numbers are replaced by Narayana numbers and Stirling
numbers of the second kind, respectively. All numbers are
well-known in combinatorics: Narayana numbers enumerate
non-crossing partitions into nonempty subsets; Stirling num-
bers of the second kind enumerate partitions into nonempty
subsets; and Lah numbers enumerate partitions into nonempty
linearly ordered subsets [29].

C. Synopsis of Results for LDS vs DS Systems

We collect the main results on LDS and DS systems from
another perspective, namely for the case of fixed load and
variable η, in Figs. 3 and 4. For fixed β, one can find the



LE et al.: FUNDAMENTAL LIMITS OF LOW-DENSITY SPREADING NOMA WITH FADING 4655

Fig. 4. Achievable spectral efficiency (bits/s/Hz) of LDS (thick lines) and DS (thin lines with marks) with optimum detection as a function of η (dB) with
load β = 2 in the presence (dark shade) or absence (light shade) of fading.

spectral efficiency as a function of η by solving (3) with
respect to γ and computing the spectral efficiency for such
value of γ. Achievable spectral efficiency (b/s/Hz), as a func-
tion of η with optimum and linear detection in the presence and
absence of fading, is shown for β = 1 and β = 2, respectively.
To summarize the sources, results for DS were derived in [15]
without fading and in [19] with fading, whereas results for
LDS without fading were derived in [16].

Both figures show that all schemes are equivalent in the
low-SNR regime, and that DS outperforms LDS with optimum
decoding, particularly in the high-SNR regime, where spectral
efficiency of the two schemes is characterized by different
slopes. With linear detection, the scenario is completely
different: when load increases beyond approximately unity,
LDS outperforms DS, with a widening gap as η increases.
Indeed, LDS keeps a positive high-SNR slope while DS cannot
afford it (cf. (17) vs. (18)). Note the effect of the “interference
population control” with DS (cf. Section III) on both figures:
spectral efficiency with fading is higher than spectral efficiency
without fading. A similar behavior holds with LDS as shown
on Fig. 4.

V. CONCLUSION

In this paper, a theoretical analysis of LDS systems in the
presence of flat fading in terms of spectral efficiency with
linear and optimum receivers was carried out in the large
system limit, i.e., as both the number of users K and the
number of degrees of freedom N grow unboundedly, with
a finite ratio β = K/N . Spectral efficiency was derived
as a function of the load β and signal-to-noise ratio γ.

The framework used extended the model in [16], which was
build on the seminal work [15], to the case with fading, along
the lines of [19].

In the absence of fading, previous work showed that, in the
large system limit DS has higher spectral efficiency than LDS
when the system is underloaded (β < 1). However, a drastic
drop occurs at about β = 1, and eventually, in the overloaded
regime (β > 1), LDS outperforms DS [16]. In this paper,
we were to able to show that this is the case also in the
presence of fading.

This is particularly important in view of massive deploy-
ment of wireless devices and ultra-densification of the net-
work towards 5G. Overloaded systems, where the number of
resources is lower than the number of users accessing the
network, will play a pivotal role in 5G, and this paper provides
a theoretical ground for choosing LDS with respect to DS,
and more generally choosing sparsity over density in signaling
formats.

Future investigations will focus on refining the understand-
ing of overloaded systems with a more general structure of
the sparsity of spreading sequences, e.g., when NS > 1. It is
interesting to understand which value of NS represents the
boundary between dense and low-dense systems, in terms of
capacity, and more generally how the system behaves as a
function of NS.

APPENDIX A
PROOF OF THEOREM 1

In order to compute (13) we need to find the distribution of
ζ :=

∑K
k=2 ρ2

1k|ak|2. We recall that ρ1k := sT
1 sk, hence the
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moment generating function (MGF) of ρ2
1k is

Mρ2(t) := �[etρ2
] =

(
1 − 1

N

)
+

1
N

et,

irrespective of k. Since |ak|2 is exponentially distributed with
unit rate, we conclude

Mρ2|a|2(t) := �[etρ2|a|2 ] = �[Mρ2(t|a|2)] = 1 +
t

(1 − t)N
.

Therefore, the MGF of ζ is (Mρ2|a|2(t))K−1, and in the large
system limit

Mζ(t) → eβ t
1−t .

Now, we express the logarithm via the following integral
representation [31]

log(1 + x) =
∫ ∞

0

1
s
(1 − e−sx)e−s ds,

which is valid for x ≥ 0. Hence one has

log
(

1 +
|a|2

ζ + 1/γ

)
=

∫ ∞

0

ds

s
e−s/γ(1 − e−s|a|2)e−sζ ,

and by taking the expectation and changing variable, t = s
1+s ,

�

[
log

(
1 +

|a|2
ζ + 1/γ

)]
=

∫ 1

0

e−t(β+ 1
(1−t)γ )

1 − t
dt.

APPENDIX B
PROOF OF (15)

With a change of variable, we can rewrite Rsumf
lds (β, γ) as

follows:

Rsumf
lds (β, γ) =

β

log 2
gβ(1/γ),

where

gβ(α) :=
∫ ∞

0

dz e−αze−β z
1+z

1
1 + z

. (30)

We observe that ηmin is expressed in terms of gβ(α) as follows:

ηmin = lim
α→∞

log 2
αgβ(α)

,

hence we need to study αgβ(α) as α → ∞. Since gβ(α)
does not admit a closed form, we have to study the specific
integral in (30). The basic observation is that the term e−β z

1+z

is bounded on the integration interval from below and above,
namely e−β z

1+z ∈ (e−β, 1]. Furthermore, most of the mass
is concentrated in a neighborhood of z = 0, as α increases.
It makes sense to partition the domain [0,∞) in two subinter-
vals, [0, ε) and [ε,∞), for some ε > 0 fixed:

gβ(α) =
∫ ε

0

dz e−αze−β z
1+z

1
1 + z

+
∫ ∞

ε

dz e−αze−β z
1+z

1
1 + z

. (31)

The first integral in (31) is upper and lower bounded by

C1(ε)
∫ ε

0

dz e−αz 1
1 + z

, (32)

with C1(ε) = C̄1(ε) := 1 and C1(ε) =
¯
C1(ε) := e−β ε

1+ε ,
respectively. Similarly, the second integral in (31) is upper
and lower bounded by

C2(ε)
∫ ∞

ε

dz e−αz 1
1 + z

, (33)

with C2(ε) = C̄2(ε) :=
¯
C1(ε) and C2(ε) =

¯
C2(ε) := e−β ,

respectively. The integrals in (32)–(33) can be expressed by
means of known functions,

α

∫ ε

0

dz e−αz 1
1 + z

= αeα[E1(α) − E1(α(1 + ε))]

= 1 + O(1/α),

where E1(x) denotes the exponential integral1 for x > 0,
for which the following asymptotic expansion holds
αe−αE1(α) = 1 − α−1 + O(α−2), and

α

∫ ∞

ε

dz e−αz 1
1 + z

= αeαE1(α(1 + ε))

≤ e−εα(1 + ε)−1,

which vanishes as α → ∞, where the inequality follows from
the standard bracketing of E1 through elementary functions.
Therefore, we proved that, for all ε > 0, the term

C1(ε) α

∫ ε

0

dz e−αz 1
1 + z

= C1(ε) + O(1/α), (34)

contributes finitely to the integral, while the term

C2(ε) α

∫ ∞

ε

dz e−αz 1
1 + z

→ 0, (35)

asymptotically vanishes. Hence, αgβ(α) → C1(ε) as α → ∞,
and the result follows since ε > 0 is arbitrary.

APPENDIX C
PROOF OF (16)

A sketch of the proof is provided. The slope can be written
as follows:

S0 = β lim
α→∞

αI1(α)2

I1(α) − α
2 I2(α)

, (36)

where

Ik(α) :=
∫ ∞

0

dz
zk

1 + z
e−z

(
α+ β

1+z

)
.

As α → ∞, the mass of the integral is increasingly concen-
trated in a neighborhood of the origin, say z ∈ [0, ε]:

Ik(α) ∼
∫ ε

0

dz
zk

1 + z
e−z

(
α+ β

1+z

)
, α → ∞.

For any fixed ε > 0, it results β
1+z ∈ [ β

1+ε , β]; therefore,
as α → ∞ it also results

Ik(α) ∼
∫ ε

0

dz
zk

1 + z
e−z(α+β), α → ∞.

The above integral can be expressed in closed form for k = 1
and k = 2. The result follows by computing the limit of the
ratio in (36), which turns out not to depend on ε.

1En(x) :=
�∞
1 dt 1

tn e−xt for all x > 0 and n positive integer.
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APPENDIX D
PROOF OF (17)

By explicitly computing the derivative in the definition
of S∞, we can rewrite it as follows:

S∞ = β lim
α→0

αIβ(α), (37)

where

Iβ(α) :=
∫ ∞

0

dz e−αze−β z
1+z

z

1 + z
. (38)

The idea of the proof is to find upper and lower bounds
on αIβ(α), that match in the limit. To this end, observe that

e−β z

1 + z
≤ e−β z

1+z
z

1 + z
≤ e−β

(
1 +

(β − 1)+

z

)
. (39)

Hence, a lower bound is

αIβ(α) ≥ α

∫ ∞

0

dz e−αze−β z

1 + z

= e−β(1 − αeαE1(α))
→ e−β. (40)

In order to compute the upper bound, split the domain of
integration to avoid a singularity at z = 0 (cf. (39)) as follows.
For any ε > 0, it results

αIβ(α) ≤ α

∫ ε

0

dz z + α

∫ ∞

ε

dz e−αze−β

(
1 +

(β − 1)+

z

)

= α
ε2

2
+ e−β−εα + (β − 1)+αE1(εα)

→ e−β, (41)

where for z ∈ [0, ε] we used a trivial upper bound for the inte-
grand of Iβ(α). The result follows from (37), (40) and (41).

APPENDIX E
PROOF OF THEOREM 2

In this appendix, we compute the moments (23) and prove
that convergence in probability to their mean holds.

The first remark is that matrix SAA∗S∗ is diagonal:

SAA∗S∗ =
K∑

j=1

sjaja
∗
js

∗
j

=
K∑

j=1

|aj |2eK
πj

eK∗
πj

=
N∑

i=1

(
K∑

j=1

�{πj=i}|aj |2
)

eN
i eN∗

i , (42)

where πk denotes the nonzero element of the signature sk and
en

i denotes the ith vector of the canonical basis of �n. In the
last step, we move randomness from vectors to scalars, which
will be shortly useful. Indeed, mL can be written as follows:

mL =
1
N

tr(SAA∗S∗)L

=
1
N

N∑

i=1

([SAA∗S∗]ii)L

=
1
N

N∑

i=1

(
K∑

j=1

�{πj=i}|aj |2
)L

. (43)

Call the sum in parenthesis Si:

Si :=
K∑

j=1

�{πj=i}|aj |2. (44)

Hence, the expected value of mL is

�[mL] = �[SL
1 ] = M

(L)
S1

(0), (45)

where M
(L)
S1

denotes the Lth derivative of the MGF of S1.

It can be shown that MSi(t) =
(
1 + t

(1−t)N

)K
, hence

M
(L)
Si

(0) =
L∑

l=1

(
L − 1
l − 1

)
L!
l!

K!
(K − l)! N l

, (46)

which in the large system limit becomes

�[mL] →
L∑

l=1

⌊
L
l

⌋
βl, (47)

where Lah numbers make their appearance
⌊

L
l

⌋
:=

(
L−1
l−1

)
L!
l! .

Alternatively, �[mL] can be expressed by using generalized
Laguerre polynomials, which naturally appear in the Taylor
expansion of the asymptotic MGF of S1.

In order to prove convergence in probability, it is sufficient
to show that Var[mL] = �[m2

L] − (�[mL])2 → 0. We have
already found �[mL]. By using (43) and (44), �[m2

L] can be
expressed as follows:

�[m2
L] = �

[(
1
N

N∑

i=1

SL
i

)2]
(48)

=
1

N2

N∑

i=1

�[S2L
i ] +

1
N2

∑

i�=j

�[SL
i SL

j ]. (49)

The first term is O(1/N) because �[S2L
i ] is bounded in

the large system limit. The second term tends to �[SL
1 SL

2 ].
In order to show that this term becomes asymptotically equal
to �[mL]2, we can actually show more, namely S1 and S2 are
asymptotically independent (S1 ⊥ S2).

To this end, interpret Si as the sum of a (random) number
of weights wk := |ak|2, namely Si =

∑
k∈Ki

wk for
Ki := {k : πk = i} ⊆ [K]. Ki is the subset of users who
have chosen dimension i. Since the weights are i.i.d. random
variables, the only source of dependence between Si and Sj

lies in the number of users who have chosen dimensions i
and j, respectively. These numbers are Ki := |Ki| and
are not independent. Indeed, the vector (K1, K2, . . . , KN ) is
distributed according to a Multinomial law with probabilities
(1/N, 1/N, . . . , 1/N). In particular, the MGF of (K1, K2) is

MK1,K2(t1, t2) =
(

1
N

(et1 + et2 + (N − 2))
)K

,

and tends in the large system limit to

MK1,K2(t1, t2) → eβ(et1−1) · eβ(et2−1),

where each term can be recognized as the MGF of a Poisson
random variable with mean β. Since K1 ⊥ K2 asymptotically,
also S1 ⊥ S2 from the independence of the weights.
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APPENDIX F
VERIFYING THE CARLEMAN CONDITION

Carleman’s condition is
∑

k≥1 m̄
−1/(2k)
2k = ∞. We start off

by upper bounding m̄2k as follows:

m̄2k =
2k∑

l=1

⌊
2k
l

⌋
βl

(a)
<

2k∑

l=1

(2k − 1)2k−l

(
2k

l

)
βl

(b)
≤ (2k − 1)2k−1

2k∑

l=1

(
2k

l

)
βl

(c)
< (2k − 1)2k(1 + β)2k, (50)

where (a) follows from the inequality
⌊
2k
l

⌋
= (2k − 1)!/

(l − 1)! = (2k − 1)(2k − 2) . . . (2k − (2k − l)) < (2k −
1)2k−l, (b) derives from upper bounding (2k − 1)2k−l with
(2k−1)2k−1, (c) is from the binomial formula by including in
the sum the l = 0 term. Therefore, m̄

1/(2k)
2k < (2k−1)(1+β),

thus
∑

k≥1

m̄
−1/(2k)
2k ≥ 1

1 + β

∑

k≥1

1
2k − 1

= ∞.

APPENDIX G
PROOF OF (27)

It is convenient to represent Copt(β, γ) (in nats) as

Copt(β, γ)=
∑

k≥1

e−ββk

k!

∫ γ

0

k exp(1/x)E1+k(1/x)
dx

x
,

(51)

which can be derived by differentiating in (26) under the
integral sign with respect to γ and integrating back after the
integration with respect to λ. From the fundamental theorem
of calculus, we have

∂

∂γ

∫ γ

0

exp(1/x)E1+k(1/x)
dx

x
= exp(1/γ)E1+k(1/γ)

1
γ

,

which tends to 1 as γ → 0, hence, by L’Hôpital’s rule,

lim
γ→0

Copt(β, γ)
γ

= lim
γ→0

∂Copt(β, γ)
∂γ

=
∑

k≥1

e−ββk

k!
k = β.

(52)

APPENDIX H
PROOF OF (28)

The second derivative of Copt(β, γ) can be computed simi-
larly to Appendix G, which results in

− lim
γ→0

∂2

∂γ2
Copt(β, γ)

= −
∑

k≥1

e−ββk

k!
lim
γ→0

∂

∂γ
exp(1/γ)E1+k(1/γ)

1
γ

=
∑

k≥1

e−ββk

k!
k(1 + k) = 2β + β2. (53)

The result follows by (53) and (52).

APPENDIX I
PROOF OF (29)

Using (51) and the fundamental theorem of calculus yields

lim
γ→∞ γ

∂Copt
lds

∂γ
=

∑

k≥1

e−ββk

k!
lim

γ→∞ k exp(1/γ)E1+k(1/γ)

=
∑

k≥1

e−ββk

k!
= 1 − e−β. (54)
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