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Abstract—Millimeter wave communications will use large
bandwidth and experience severe attenuation due to the pathloss.
The two above conditions may force the communication system
to enter the so-called wideband regime, where transmitted signals
must be increasingly “peaky” in order to achieve a large fraction
of the wideband capacity. This paper investigates noncoherent
capacity of millimeter wave communications with average and
peak power constrained inputs as a function of bandwidth. The
impact of several parameters, in particular coherence block size
and strength of the normalized specular component in line-of-
sight propagation, is also studied. Capacity upper and lower
bounds are provided and suggest that in practical scenarios the
communication system may have to operate in the wideband
regime. Paired with non-line-of-sight propagation, dense signaling
is shown to limit the maximum achievable rate for typical users
in the cell.

Index Terms—Noncoherent capacity, mmWave spectrum, wide-
band channels.

I. Introduction
Millimeter wave (mmWave) communications have been

recently proposed as a key enabling technology for 5G [1],
[2]. Thanks to the large bandwidth, mmWave communications
promise to offer data rates more than one order of magnitude
higher than LTE [3]. However, propagation at mmWave
frequencies is peculiar. Recent measurement campaigns show
the presence of blockages, severe attenuation due to higher
carrier frequencies, and significant non-line-of-sight (NLOS)
propagation [3]–[5]. Channel capacity for channels accounting
for the above properties has not yet been investigated.

The maximum rate achievable in fading channels is pro-
vided by the noncoherent capacity. In particular, the wideband
capacity limit for the additive white Gaussian noise (AWGN)
channel is not representative of the wideband capacity limit for
fading channels, especially when inputs are peak constrained
(dense signaling). Without the peak constraint assumption, the
noncoherent wideband capacity limit is equal to the AWGN
wideband capacity limit, that is P=N0 nats/s, where P is the
power of the received signal and N0 is the noise spectral
height, a result that dates back to Pierce [6] and Kennedy [7].
However, the required signaling is increasingly “peaky” [8] for
the above result to hold. In full generality, Verdú showed that
signaling has to be flash [9], i.e., the input distribution must be
increasingly concentrated about a zero-cost input as bandwidth
increases, while satisfying the average power constraint with
equality by exhibiting a small component at large amplitude
values. In our setting, the cost of the communication is the
power and the zero-cost input is mapped to a waveform

that is equal to zero. Peak constraint is often required in
practice, hence the noncoherent capacity investigation with
peak-constrained input is valuable for concrete applications.

Recent literature on noncoherent capacity can be classified
on the basis of the channel model and the signal-to-noise
ratio (SNR) regime of interest. Following the first criterion,
channels were mainly modeled according to either block
models [10]–[14] or stationary models [8], [15]–[19], that
represent the two extrema corresponding to “discontinuous”
(or “abrupt”) vs. “continuous” (or “smooth”) fading correlation
across signal space dimensions. According to the second
criterion, capacity bounds were typically derived with a focus
on either the high-SNR regime [16], [17] or the low-SNR
regime [8], [9], [12], [13], [18]. Capacity wideband scaling
was first investigated in [8], [20] in relation to a wide-sense
stationary uncorrelated-scattering (WSSUS) fading channel. It
was shown that capacity of signals with second and fourth mo-
ment constraints proportional to 1=W and 1=W2, respectively,
where W is the bandwidth of the signal, scales as 1=W . The
fourth moment constraint guarantees that transmitted signals
spread energy “evenly” on signal space dimensions. A similar
behavior was shown in [21] for multipath channels and “white-
like” signals. Differently from above, capacity bounds as a
function of bandwidth W for fixed power P were presented
in [19], under both average power and amplitude constraints,
in a Rayleigh-fading WSSUS channel: the analysis in this case
covered both high- and low-SNR regimes.

In this paper we derive capacity bounds as a function
of bandwidth similarly as [19]. Differently from [19], we
introduce mmWave channel features, namely blockages, line-
of-sight (LOS) propagation and power profile in frequency
due to water and oxygen absorption, and model the channel
according to a block-fading model. We study capacity with
either amplitude or fourth-moment constrained inputs. We
derive explicit capacity lower bounds and show achievable
rates of practical signaling schemes based on training. We
discuss the impact of several system parameters, in particular
coherence block size and LOS path strength, on achievable
rates, and present numerical results for a scenario of interest
based on the recent measurement campaign [3].

II. SystemModel

We assume that a baseband signal of duration T and
bandwdith W is transmitted over a doubly dispersive channel
having coherence time Tcoh and coherence bandwidth Wcoh



(see Fig. 1). We consider a Weyl-Heisenberg (or Gabor)
set f�kl .t/ WD g.t � kT /e j2�lW g, with t 7! g.t/ a baseband
bandlimited function. One can think of �kl .t/ as a signal
that is “well localized” in the time-frequency plane around
.kT; lW / and occupies a unit-area rectangle of duration T

and bandwidth W (refer to [19] for the details). Denote
Td the delay spread and WD the Doppler spread of the
channel. The following relations hold in a dense scattering
environment: Wcoh D 1=Td; Tcoh D 1=WD. It turns out that,
for typical scenarios, mmWave channels are underspread, that
is, TdWD� 1, hence each coherence block has dimension
.TcohWcoh/=.T W /� 1 once discretized. Parameters T and W
can be chosen according to a matched design, that is T=W D
Td=WD [19], [22]. Projection onto the Weyl-Heisenberg set
maps the continuous-time channel onto a set of parallel flat-
fading channels

ykl D hklxkl C nkl ; 06 k 6K � 1; 06 l 6 L � 1; (1)

where: xkl and ykl are the transmitted and received signals
projected onto �kl ; hkl is the channel coefficient; nkl is the
unit-variance additive white Gaussian noise; K D T =T and
LDW=W (for the sake of simplicity, we assume K and L
integers). We organize (1) in matrix form as follows,

YD Hˇ XC N; (2)

where ˇ is the Hadamard (elementwise) product, ŒY�kl D ykl ,
and H, X and N similarly defined. We assume a block-
fading model, that is, the channel is assumed constant over
each coherence block, and channel coefficients are inde-
pendent across blocks. Formally, denote DT D T =Tcoh and
DW DW=Wcoh the number of coherence blocks in time and
frequency, respectively, and Hij the fading coefficient within
coherence block .i; j /, with 16 i 6DT and 16 j 6DW.
That is, Hij WD ŒH�.i�1/`TCk;.j�1/`WCl for all 06 k 6 `T � 1

and 06 l 6 `W�1, having denoted `T DK=DT D Tcoh=T , and
`W D L=DW DWcoh=W . For brevity, we will denote `D `T`W

the block size.
Three properties peculiar of mmWave propagation channels

are taken into account, namely blockages, power absorption
profile, and LOS/NLOS fading [3]. Hence, we propose to
model channel coefficient Hij as

Hij D AivjGij ; (3)

where: Ai ∼ Bernoulli.1 � pB/ accounts for blockages at
coherence time i , where pB is the probability of blockage; vj
is deterministic and approximates the absorption at coherence
band j ; and Gij ∼ CN.k; 1 � jkj2/ accounts for the Rician
fading in block .i; j /. The channel block structure induces a
natural partition of matrices in (2). Let Yij be the `T�`W matrix
of the received signal in coherence block .i; j /, and similarly
define Hij , Xij , and Nij . The relation between blocks is Yij D
HijˇXijCNij DHijXijCNij . Vectorizing each block, that is,
defining Yij D vec.Yij / and using similar notations for Hij ,
Xij , and Nij , yields Yij DHij ˇXij CNij DHijXij CNij .
Stacking vectors in j first and then in i yields an equivalent
vector form of (2):

Y DH ˇX CN : (4)
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Fig. 1: Representation of the doubly-dispersive block-fading model.

The problem statement is as follows: find the noncoherent
capacity of channel (4),

C D
1

T
sup
PX

I.X IY /; (5)

when input distributions satisfy an average power constraint,

1

T
EŒ kXk22 �6 P DW PW; (6)

where P is the received power and P is the received power
per degree of freedom, and a peak power constraint in the
form of either amplitude constraint,

jŒX�kl j
2 6 ˇ

P
W
D ˇP a.s.; (7)

or fourth-moment constraint,

EŒ jŒX�kl j
4 �6 ˇP 2; (8)

for 06 k 6K�1 and 06 l 6 L�1. Note that eqs. (6) and (7)
can be compactly rewritten EŒ kXk22 �6KLP and kXk21 6
ˇP a.s., respectively.

III. Capacity Upper Bounds

In this section we present three Theorems stating capacity
upper bounds. Due to space constraints, proofs are omitted
and will be presented in a journal version of this paper.

In the below Theorem 1 we derive an upper bound without
taking into account any peak constraint. It proves to be useful
in the high-SNR regime.

Theorem 1. Consider a block-fading channel with DT co-
herent blocks in of dimension `T and DW coherent blocks in
frequency of dimension `W. Assume that the absorption profile
is .v1; : : : ; vDW/, the blockage probability is pB, and inputs are
subject to the average power constraint EŒ kXk22 �6KLP .
Denote P ?j D Œp.vj ; �/�

C, where p.v; �/ is the solution of



Œ1 �  .vp/� C p�D 0, and  .�/D EŒ 1=.1C �jgj2/ �. An
upper bound to capacity is

sup
PX

1

KL
I.X IY /6 .1 � pB/

1

DW

DWX
jD1

J.v2j P
?
j /; (9)

where J.�/D EŒ log.1Cjgj2�/ �, and � is such that the average
power constraint is satisfied with equality, i.e.,

PDW
jD1P

?
j .�/D

DWP .

The power allocation is strictly related to mercury/water-
filling [23], [24]. In general,  is not available in closed
form, and the problem is numerically solved. In the below
Corollary 1 we explicit the case with no absorption, i.e.,
v1 D � � � D vDW D 1, where the optimum power allocation can
be found in closed form.

Corollary 1. Let the assumptions be as in Theorem 1 and set
v1 D � � � D vDW D 1. Capacity is upper bounded as

sup
PX

1

KL
I.X IY /6 .1 � pB/J.P / (10)

where J.�/D EŒ log.1C jgj2�/ �.

We present an upper bound with amplitude constrained
inputs in the below Theorem 2, that is obtained by adapting the
bounding idea of [19] to block-fading channels, and simplify
the bound in the case of no absorption in Corollary 2.

Theorem 2. Let the assumptions be as in Theorem 1 and let
inputs be further subject to the amplitude constraint kXk21 6
ˇP . Capacity is upper bounded as

sup
PX

1

KL
I.X IY /6

1 � pB

DW
sup
q2Œ0;1�

� DWX
jD1

log.1C v2j P
?
j /

�
qP

`P ısum
log.1C v2j `P

ı
j .1 � jkj

2//

�
(11)

where P ?j D .� � 1=v2j /
C with � such that

PDW
jD1 P

?
j D

qDWP , and P ısum D P
ı
1 C � � � C P

ı
DW

, being

.P ı1 ; � � �; P
ı
DW
/D argmin

.P1;���;PDW /

2f0;ˇP gDW

DWX
jD1

log.1C v2j `Pj .1 � jkj
2//

P1 C � � � C PDW

:

Corollary 2. Let the assumptions be as in Theorem 2 and set
v1 D � � � D vDW D 1. Capacity is upper bounded as

sup
PX

1

KL
I.X IY /6 .1 � pB/ sup

q2Œ0;1�

�
log.1C qP /

�
q

ˇ`
log

�
1C ˇ`P.1 � jkj2/

��
: (12)

When the peak power constraint is the fourth-moment con-
straint, similar results hold, as shown in the below Theorem 3
and Corollary 3.

Theorem 3. Let the assumptions be as in Theorem 1 and
let inputs be further subject to the fourth-moment constraint
EŒ jŒX�kl j4 �6 ˇP 2. Capacity is upper bounded as

sup
PX

1

KL
I.X IY /6

1 � pB

DW
sup
q2Œ0;1�

� DWX
jD1

�
log.1C Qv2j P

?
j /

�
1

DT

DTX
iD1

q2 NP 2ij

`ˇP 2
log

�
1C v2j .1 � jkj

2/
`ˇP 2

q NPij

���
(13)

with P ?j D .��1=v
2
j /
C, � such that

PDW
jD1 P

?
j D qDWP , and

f NPij gij D arginf
06Pij 6

p
ˇPP

ijPijDDTDWP

DTX
iD1

DWX
jD1

q2P 2ij

ˇP 2
log

�
1Cv2j .1�jkj

2/
`ˇP 2

qPij

�
:

Corollary 3. Let the assumptions be as in Theorem 3 and set
v1 D � � � D vDW D 1. Capacity is upper bounded as follows:

sup
PX

1

KL
I.X IY /6 .1 � pB/ sup

q2Œ0;1�

�
log.1C qP /

�
q2

`ˇ
log

�
1C .1 � jkj2/

`ˇP

q

��
(14)

Remark 1. Both results in Corollary 2 and 3 have same
expansion as P ! 0 equal to .1�pB/jkj

2P . It can be shown
that, in the NLOS scenario, capacity (bits/s) is proportional to
1=W , in line with [8].

IV. Capacity Lower Bounds
In this section, we assume independent inputs over different

coherence blocks, that yields

I.X IY /D

DTX
iD1

DWX
jD1

I.Xij IYij /; (15)

and derive bounds for the mutual information in the generic
block, i.e., I.Xij IYij /. The average power allocated to each
block can be later optimized via mercury/water-filling [23],
[24] on the basis of the sole knowledge of fv1; : : : ; vDWg. For
notation simplicity, we drop subscripts and denote I. NX I NY / the
mutual information in the generic block, and NX the generic
element of NX .

Lemma 1. Consider a block-fading channel where the ab-
sorption coefficient of the generic block is v and the blockage
probability is pB. Let inputs be subject to both average
power constraint EŒ k NXk22 �6 `P and fourth-moment con-
straint EŒ j NX j4 �6 ˇP 2. An achievable rate per block is

sup
P NX

1

`
I. NX I NY /> .1 � pB/

h
Eg∼PG

Œ h.vg NX CN/ � � log.�e/
i

�
1
`
E Nx∼P NX

Œ log.1C �2Hk Nxk22/ � (16)

for any P NX satisfying both power constraints.

When ˇ > 2, we can apply Jensen’s inequality to the second
term in the RHS of (16) and consider the maximum entropy
distribution, that is Gaussian, for the remaining term. The
result is summarized in the following Corollary.

Corollary 4. Let the assumptions be as in Lemma 1, and let
ˇ > 2. An achievable rate per block is



sup
P NX

1

`
I. NX I NY /> .1 � pB/Eg∼PG

Œ log.1C v2jgj2P / �

�
1
`

log.1C �2H `P /: (17)

As a matter of fact, Corollary 4 is not tight in the peak
constraint. We can improve the bound via a time-sharing
argument [19], where transmission is allowed over a fraction
� of blocks only. Since blocks can be arbitrarily selected in
the time as well as the frequency domain, we refer to it as
block sharing.

Theorem 4. Let the assumptions be as in Lemma 1. Denote
� NX the input kurtosis and R.P; � NX / the achievable rate in
(16). An achievable rate per block is

sup
P NX

1

`
I. NX I NY / > sup

� NX=ˇ6�61
� R

�P
�
;
� NX
�

�
: (18)

Using Gaussian inputs yields the following Corollary.

Corollary 5. Let the assumptions be as in Theorem 4 and let
ˇ > 2. Denote R.P / the achievable rate in (17). An achievable
rate per block is

sup
P NX

1

`
I. NX I NY / > sup

2=ˇ6�61
� R

�P
�

�
: (19)

Remark 1 (Geometric interpretation of block sharing argu-
ment). Since �R.P=�/ nats/degree-of-freedom can be rewrit-
ten as �WR.P=.�W// nats/s, the supremum in (19) with
respect to � 2 Œ�0; 1�, where �0 2 .0; 1/, can be interpreted as
follows: any rate achievable with bandwidth W 0 2 Œ�0W;W�

is also achievable with W via block sharing. In particular,
with no peak constraint the rate achievable with bandwidth
W is the “running maximum” rate, that is, the maximum rate
achievable up to bandwidth W .

Other achievable rates can be obtained with practical
schemes using training. Due to space constraints we omit
their discussion here and show in the next section numerical
results for two particular cases, namely truncated Gaussian and
constant-modulus inputs.

V. Numerical Examples
We consider three different values of P=N0 derived from

scenarios based on experimental campaigns [3], [5]:
� Case 1 (user near base station): P=N0 D 2:09 � 109 s�1.
� Case 2 (user in typical location): P=N0 D 2:32 �107 s�1.
� Case 3 (user near cell edge): P=N0 D 4:13 � 106 s�1.

We assume N0 D kBT D 4:14 � 10
�21 joules, where kB is the

Boltzmann constant and T D 300 kelvin. Values of P=N0
can be read in terms of wideband capacity limit of AWGN
and fading channels with no peak constraint, i.e., CWB D

P=N0 nats/s. In the presence of blockages, the maximum
achievable rate is reduced to .1 � pB/CWB, that corresponds
to approximately 3 Gb/s (Case 1), 30 Mb/s (Case 2), and 1:8
Mb/s (Case 3).

Scenarios are derived as follows. Denote R and r cell
radius and user distance from the base station, respectively, and
assume that the base station is located at cell center. Pathloss
is computed by adding to the free-space pathloss at distance r

TABLE I: List of parameters defining different scenarios of interest.

Variable Case 1 Case 2 Case 3 Unit

R Cell radius 200 200 200 m
r User distance from BS 50 150 200 m
pB Blockage probability 0 0:1 0:7 (pure)
jkj LOS component 0:8 0:2 0 (pure)
A Additional attenuation 15 25 30 dB
fc Carrier frequency 73 73 73 GHz
G Beamforming gain 15 15 15 dB
PTX Transmitted power 30 30 30 dBm

F Receiver noise figure 7 7 7 dB
` Coh. block size 500 500 500 (pure)

and carrier frequency fc an additional attenuation AD A.r; fc/

to match experimental data [3]:

PL (dB)D 20 log10 r C 20 log10 fc C 20 log10
4�
c
C A; (20)

where c is the speed of light. Beamforming gains are summa-
rized in the variable GD G.fc/ (dB). Assuming transmitted
power PTX (dBm) and receiver noise figure F (dB), the re-
ceived power is

P (dBm)D PTX (dBm)C G (dB) � F (dB) � N0

1J (dB): (21)

Table I collects parameters used to define the above three
scenarios. In order to keep the number of parameters as low
as possible, figures refer to the case of no absoprtion, i.e.,
v1 D � � � D vDW D 1. Bandwidths of interest lie in the interval
1 GHz–10 GHz. Attenuations in Table I are representative of
communications towards outdoor users. In case the attenuation
of a concrete wall is taken into account, the system would
enter the low-SNR regime at smaller bandwidths than those
of interest, and a fortiori our conclusions would be valid.

Figures 2 and 3 show rates (Mb/s) as a function of
bandwidth W (Hz) for Case 1 and 2, respectively. Solid vs.
dashed lines indicate capacity upper vs. lower bounds. Dotted
lines indicate rates achieved via training. Peak constraints
are either amplitude or fourth-moment constraints with ˇ D
3. Curves refer to: AWGN upper bound CAWGN; coherent
upper bound Ccoh from eq. (12); capacity upper bounds from
eqs. (12) and (14), CUB (there is no appreciable difference
on plot between the two); capacity lower bound CLB from
eq. (19); rates achievable via training using truncated Gaussian
inputs, Rtr

TG, and constant-modulus inputs optimized via block
sharing, Rtr

CM,opt. Figure 2 refers to Case 1 (user near BS):
the communication system operates in a relatively high SNR
regime per degree of freedom (e.g. SNR is approximately
equal to 3 dB when W D 1 GHz). Capacity lower bound is
almost overlapped to coherent capacity upper bound, and rates
achievable using training and amplitude constrained inputs
follow closely. It is shown, therefore, that dense signaling
schemes are sufficient to achieve high rates in the order of
Gb/s. Figure 3 refers to Case 2. The user approximately lies on
the boundary of a circle that partitions the cell in two regions
with same area: when users are placed uniformly at random,
half of the users will perform better and the other half worse,
on average, than the user on the boundary. In this case the
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Fig. 2: Case 1: user near cell center (BS). Rate (Mb/s) as a function
of bandwidth W (Hz). Scenario parameters: column “Case 1”
of Table I.
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Fig. 3: Case 2: user in between center and edge. Rate (Mb/s) as a
function of bandwidth W (Hz). Scenario parameters: column
“Case 2” of Table I.

user is no longer in the high-SNR regime at bandwidths of
interest (e.g. SNR is approximately equal to �16 dB when
W D 1 GHz), and capacity lower and upper bounds have
negative slope. Although amplitude constrained inputs using
training may experience a significant rate degradation, upper
and lower bounds are close to each other, and also relatively
close to the AWGN wideband capacity. We do not provide
a figure for Case 3, which is qualitatively similar to Fig. 3:
in this case, the user is located at a distance comparable to
the typical mmWave cell radius, and communication occurs in
the deep low-SNR regime. The AWGN wideband capacity is
reduced due to strong attenuation and blockages, and further
rate degradation is experienced by dense signaling schemes
due to NLOS propagation.

Effect of other system parameters is investigated on Figs. 4
and 5, that refers to Case 2. Figure 4 shows capacity bounds
as a function of bandwidth for weak (jkj D 0:25) and strong

(jkj D 0:75) LOS scenarios. While insensitive for sufficiently
small bandwidths, rate is particular dependent on the strength
of the specular component in the wideband region. In par-
ticular, eq. (17) implies that an achievable wideband limit is
.1 � pB/

2jkj2P=N0 nats/s, that corresponds to approximately
1:7 Mb/s for jkj D 0:25 and to 15:3 Mb/s for jkj D 0:75;
eqs. (12) and (14) provide an upper bound wideband limit
equal to .1�pB/jkj

2P=N0 nats/s, that corresponds to approxi-
mately 1:9 Mb/s for jkj D 0:25 and to 16:9 Mb/s for jkj D 0:75.
Figure 5 shows capacity upper and lower bounds as a function
of bandwidth for different block size ` 2 f102; 103; 104g. It
is shown that, as block size grows, the wideband regime
is pushed towards higher bandwidths, and the width of the
frequency interval where each curve is above a fraction of the
maximum increases as well. Bounds are approximately parallel
for a large portion of the wideband regime, until reaching a
value close to the wideband limit, which is not affected by
the block size (upper and lower bounds tend to 1:20 Mb/s and
1:08 Mb/s, respectively).

VI. Discussion
Mobile communications using mmWave bands may have to

operate in the wideband regime and experience low-SNR per
degree of freedom, due to both large bandwidth and severe
attenuation. Paired with NLOS propagation, that can occur
even with small cell dimensions [3], and peak-constrained
inputs, users may experience capacity limits far from the
AWGN wideband limit.

We derived capacity upper and lower bounds as a function
of bandwidth, LOS strength, blockage probability, and block
size. Upper bounds are derived by adapting the work in [19]
to block-fading and extending the bounding idea therein to
address the case of kurtosis-constrained inputs. Lower bounds
that are tight for a subset of parameters are proposed as
well. We presented numerical results for a scenario where
an outdoor user is located at different distances from the
BS. As long as the user is sufficiently close to the BS,
communication occurs in the high-SNR regime, and aside from
technological issues of implementing orthogonal frequency-
division multiplexing (OFDM) or similar systems with several
thousand subcarriers [25], traditional (dense) signaling is
nearly capacity-achieving. Rates may reach values in the order
of Gb/s. However, a large fraction of users is not sufficiently
close to the BS to operate in the high-SNR regime per degree
of freedom: in this case, strong attenuation and blockages
reduce the AWGN wideband limit, and NLOS propagation
paired with dense signaling further degrades the achievable
rate. We studied rate sensitivity to other system parameters,
in particular strength of channel specular component and
coherence block size. In the presence of LOS, the rate
achievable with dense signaling is bounded away from zero,
and tends to the rate of a system that uses the LOS component
only. As the block size increases, communication enters the
wideband regime at increasingly large bandwidth: however,
we showed that for typical mobile communications block size
and SNR regimes, dense signaling can partially cause the rate
degradation.
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Users may, therefore, experience both high- and low-
SNR per degree of freedom within cells of relatively small
radius such as mmWave cells. As a consequence, mmWave
communications may have to support both dense and sparse
signaling schemes in order to maximize the achievable rate for
a given power expenditure. In particular, since both NLOS and
low-SNR are strongly correlated, and also correlated with user
distance from the BS, the rationale for the signaling should
be the farther the user, the sparser the signaling. However,
dense signaling can be sensibly used with either strong LOS
or coverage that guarantees high-SNR per degree of freedom.
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