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Abstract—We investigate the capacity of energy harvesting
binary symmetric channels with deterministic energy arrival
process and finite battery size. Using an abstraction of the
physical layer, binary symbols are transmitted. A cost function
is associated with each transmitted symbol. Upper and lower
bounds on the channel capacity are derived as functions of the
normalized exponent of the cardinality of the set of feasible
input sequences. Upper and lower bounds on the normalized
exponent are established by studying supersets defined by re-
laxed constraints and employing a harvest-and-transmit signaling
scheme, respectively. Numerical results validate that bounds on
the exponent imply effective bounds on the channel capacity.

I. INTRODUCTION

A promising feature of future wireless communication net-
works, in particular in view of the deployment of Internet-
of-Things (IoT) networks [1], is the possibility of using the
energy harvested from the environment to transmit informa-
tion. The harvested energy can prolong the lifetime of the
network and avoid frequent battery replacement. In typical
sensor networks, most of the energy is consumed for informa-
tion transmission [1]. Therefore, particular attention has been
recently paid to searching for efficient transmission schemes
and fundamental limits of energy harvesting communications
[2], [3].

Energy harvesting communications systems are not mem-
oryless due to the causality of energy harvesting and energy
consumption. The memory of the system and the finite battery
size have posed great challenges to the capacity analysis. An
early result was that the capacity of the energy harvesting
additive white Gaussian noise (AWGN) channel with infinite
battery size is the same as the capacity of the AWGN channel
with average power constraint [4]. This result extended the
optimality of independent and identically distributed code-
books to energy harvesting channels with infinite battery by
proving that the fraction of unfeasible codewords is vanishing
in the large blocklength limit. However, this does not hold
when the battery size is finite. A step toward understanding
capacity in the finite battery regime was made in [5], [6] by
assuming a noiseless channel and transforming the original
energy harvesting channel to a timing channel. The problem
is not trivial because of the memory in the sequence of
transmitted symbols. In [7], [8], the capacity of the energy
harvesting AWGN channel was characterized up to a constant
gap of approximately 2.58 bits. Several contributions on the
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Fig. 1. Energy harvesting channel with (σ, ρ)-power constraint.

capacity analysis assumed that some sort of side information
is available at receiver side [9], [10]. Capacity bounds have
been established by regarding the energy level in the battery
as channel state under different assumptions on the knowledge
of the state at the transmitter [11], [12]. Recently, an energy
harvesting system with deterministic energy arrival process
and finite battery size was proposed for the study of energy
harvesting AWGN channels [13]. In the proposed model, ρ
units of energy are harvested in each time slot, and the battery
can store at most σ units of energy. Thus, the constraint is
referred to as (σ, ρ)-power constraint. In the original setup of
[13], the channel is modelled as an AWGN channel and the
transmitted symbol is a continuous variable.

In this work, we adopt the viewpoint of [13] and study
the capacity of (σ, ρ)-power constrained energy harvesting
channels by considering an abstraction of the physical lay-
er. We model the channel as a binary symmetric channel
(BSC) and consider binary transmitted symbols x ∈ {0, 1}.
We derive the upper and lower bounds on the capacity of
(σ, ρ)-power constrained energy harvesting binary symmetric
channel (EHBSC) in terms of the normalized exponent of the
cardinality of the set of feasible input sequences (hereinafter
simply referred to as ‘exponent’). By studying the constraints
posed by the energy arrival process on the set of feasible inputs
and employing specific signaling schemes based on a harvest-
and-transmit strategy, we propose upper and lower bounds on
the exponent and the channel capacity, respectively.

The rest of this paper is organized as follows. We introduce
the EHBSC model in Section II. In Section III, we develop
the capacity of special EHBSCs, and present bounds on the
capacity of general cases as functions of the exponent of
the cardinality of the feasible set. Section IV presents the
upper and lower bounds on the exponent, which imply several
bounds on capacity. Numerical results are provided in Section
V and conclusion is drawn in Section VI.



II. SYSTEM MODEL

Consider the energy harvesting communication channel
illustrated in Fig. 1. The transmitter is equipped with a battery
that can store up to σ units of energy. Time is slotted and one
binary symbol in Z2 := {0, 1} is transmitted within each time
slot. Define a cost function c : Z2 → [0,+∞) that takes into
account the energy spent for transmitting symbols. Without
loss of generality, we set c(1) = 1, i.e., one unit of energy is
used for transmitting symbol 1. We assume that c(0) = 0, i.e.,
symbol 0 is the zero-cost symbol. Hence, c(x) = x. Given a
sequence xn, the cost of the sequence is the sum of the cost
of individual symbols, which is equal to the Hamming weight
of the sequence, i.e., the number of 1s in the sequence. It
is assumed that ρ ∈ [0,+∞) units of energy arrives at the
transmitter in each time slot, and that the transmitter stores
energy if the battery is not full. Denote σi the amount of stored
energy (state) at the beginning of time slot i. Such information
is assumed to be known by the transmitter and unknown by
the receiver. By assuming the battery is full at time i = 0, the
state evolves as

σi+1 = min{σi + ρ− c(Xi), σ}, (1)

where (X1, X2, . . .) represents the transmitted symbols pro-
cess. Note that because σi+1 depends, in particular, on the
symbol transmitted during slot i, (σi)

∞
i=0 is a process with

memory. A feasible input sequence xn := (x1, . . . , xn) is a
sequence of n symbols such that σi > 0 for i = 1, . . . , n. The
set of feasible input sequences is:

Sn(σ, ρ) := {xn ∈ Zn
2 : σi > 0, 0 6 i 6 n}. (2)

We find it useful to define the following exponent:

v(σ, ρ) := lim
n→∞

1

n
log2 |Sn(σ, ρ)|, (3)

where |Sn(σ, ρ)| represents the cardinality of Sn(σ, ρ). The
existence of v(σ, ρ) follows from the sub-additivity of
log2 |Sn(σ, ρ)|. The received symbol at slot i is

Yi = Xi + Zi mod 2 (4)

where Zi ∼ Bern(q) is a Bernoulli distributed noise with
parameter q ∈ [0, 1

2 ]. We assume that the channel is memory-
less, i.e., {Zi}i>1 is a sequence of i.i.d. random variables. We
study the capacity of the EHBSC with (σ, ρ)-power constraint,
denoted by C(σ, ρ), in the following section.

III. CAPACITY ANALYSIS

Capacity of the EHBSC is characterized in §III-A in special
cases. General upper and lower bounds are presented in §III-B.

A. Special Cases

1) ‘High’ Energy Arrival Rate: If ρ > 1, then in each time
slot the transmitter can select 1 or 0 freely irrespective of the
battery size. Hence the energy harvesting channel is equivalent
to the BSC with cross probability q, and C(σ, ρ) = 1−H2(q)
bits/use, where H2(q) := −q log2 q − (1 − q) log2(1 − q) is
the binary entropy function.

2) ‘Very Small’ Battery Size: If ρ < 1 and σ < 1− ρ, the
transmitter cannot transmit symbol 1, irrespective of the time
spent on harvesting energy. Thus, C(σ, ρ) = 0 for σ+ ρ < 1.

3) Infinite Battery Size: If the battery size is infinite, i.e.,
σ = ∞, it can store all the unused harvested energy for future
transmissions. Following the save-and-transmit strategy [4],
capacity of the EHBSC is given by:

C(∞, ρ) =

{
H2(ρ ∗ q)−H2(q), if ρ < 1

2 ,

1−H2(q), otherwise ,
(5)

where ρ ∗ q := ρ(1− q) + q(1− ρ).

B. General Cases

We focus on the EHBSC with (σ, ρ)-power constraint satis-
fying ρ ∈ (0, 1) and σ > 1−ρ, referred to as general EHBSC.
We can bound the capacity of (σ, ρ)-power constrained general
EHBSC as follows.

Theorem 1. The capacity of (σ, ρ)-power constrained EHBSC
with crossover probability q satisfies

H2

(
H−1

2 (v(σ, ρ)) ∗ q
)
−H2(q)

6 C(σ, ρ) 6 min{C(∞, ρ), v(σ, ρ)}. (6)

Proof. Let Fn represents the set of all probability distribu-
tions supported almost surely on Sn(σ, ρ). Then, the equiv-
alence between the operational definition of capacity and its
information-theoretical counterpart is given by [13]

C(σ, ρ) = lim
n→∞

1

n
sup

PXn∈Fn

I(Xn;Y n). (7)

From the binary entropy-power inequality [14], it results

H−1
2

(
lim
n→∞

1

n
H(Y n)

)
> H−1

2

(
lim
n→∞

1

n
H(Xn)

)
∗ q.

Hence, one has

1

n
I(Xn;Y n) =

1

n
H(Y n)−H2(q)

> H2

(
H−1

2

(
1

n
H(Xn)

)
∗ q

)
−H2(q). (8)

Since both H2(p ∗ q) and H−1
2 (p) increase as a function of p,

the following inequality holds:

sup
PXn∈Fn

I(Xn;Y n)

n
> H2

(
H−1

2

(
sup

PXn∈Fn

H(Xn)

n

)
∗ q

)
−H2(q)

(a)
= H2

(
H−1

2

(
log2 |Sn(σ, ρ)|

n

)
∗q

)
−H2(q), (9)

where (a) follows from the uniform distribution over Sn(σ, ρ)
being optimum. Taking the limit as n → ∞ yields the lower
bound in (6) by continuity of H2(·) (cf. (3)).

To derive the upper bound, observe that

lim
n→∞

sup
PXn∈Fn

1

n
I(Xn;Y n) 6 lim

n→∞
sup

PXn∈Fn

1

n
H(Xn)

= lim
n→∞

log2 |Sn(σ, ρ)|
n

= v(σ, ρ). (10)



Noting that C(σ, ρ) is naturally bounded by C(∞, ρ) and
combining (7), (9), and (10) yield the upper bound in (6).

IV. UPPER AND LOWER BOUNDS ON v(σ, ρ)

In this section, we present upper and lower bounds on
v(σ, ρ), which imply upper and lower bounds on the channel
capacity C(σ, ρ), respectively, by virtue of Theorem 1.

A. Upper Bounds on v(σ, ρ)

By telescoping the minimum operation in (1), one has

σi = min

(
σ, σ + ρ− xi, . . . , σ + iρ−

i∑
j=1

c(xj)

)
> 0.

Therefore, one can equivalently express (2) as follows [13]:

Sn(σ, ρ) =

{
xn ∈ Zn

2 :

j+l∑
i=j+1

c(xi) 6 σ + lρ,

0 6 j 6 n− l, 1 6 l 6 n

}
. (11)

The above (σ, ρ)-power constraint indicates that an input
sequence is feasible if and only if all subsequences do not
violate the energy constraint, i.e., the Hamming weight of each
subsequence is not larger than the battery size plus the amount
of energy harvested during its transmission.

To derive an upper bound on v(σ, ρ), let us remove some of
the constraints that define the set Sn(σ, ρ). In particular, for
fixed σ and ρ, define the set

S(l)
n :=

{
xn ∈ Zn

2 :

j+l∑
i=j+1

xi 6 σ+lρ, 0 6 j 6 n−l

}
. (12)

Then, Sn(σ, ρ) =
∩n

l=1 S
(l)
n , and in particular:

|Sn(σ, ρ)| 6 |S(l)
n |, l = 1, . . . , n. (13)

To study |S(l)
n |, let us consider the following partition of

S(l)
n in K subsets {S(l)

n1 , . . . ,S
(l)
nK}, where S(l)

nk is the subset
of sequences in S(l)

n with the l trailing (rightmost) symbols
representing k − 1 in binary notation, i.e.:

S(l)
nk :=

{
xn ∈ S(l)

n : (xn
n−l+1)10 = k − 1

}
, (14)

where (·)10 denotes the operator that outputs the decimal value
of the binary string in the argument (e.g., (110)10 = 6). In
general, there can be K := 2l possible subsets, some of which
can be empty because of the Hamming constraint given in
(12). Let z

(l)
nk := |S(l)

nk | be the cardinality of subset k. We
group these cardinalities in a vector z(l)

n := (z
(l)
n1, . . . , z

(l)
nK)T.

The following relation between z
(l)
n and z

(l)
n+1 holds:

z
(l)
n+1 = Alz

(l)
n , (15)

where (Al)ij = 1 if each sequence xn ∈ S(l)
ni can generate a

sequence xn+1 ∈ S(l)
(n+1)j by padding 0 or 1 at position n+ 1,

and (Al)ij = 0 otherwise. Note that Al ∈ RK×K depends on
l but it does not depend on n.

Based on the spectral properties of Al, we have the follow-
ing upper bound on v(σ, ρ).

Theorem 2. The exponent v(σ, ρ) satisfies

v(σ, ρ) 6 min
l>1

log2 λmax(Al), (16)

where λmax(Al) is the maximum eigenvalue of Al.

Proof. By iteratively applying (15) backward we have

z(l)
n = An−l

l z
(l)
l = An−l

l 1K ,

where 1K is a length-K vector of 1s. Note that z
(l)
l = 1K

since there is just one subsequence in each subset S(l)
lk (cf.

(14)). By using (15) again, we have

|S(l)
n | =

K∑
k=1

z
(l)
nk = ∥z(l)

n ∥1.

Therefore, we can express the cardinality of S(l)
n in terms of

Al only:
|S(l)

n | = ∥An−l
l 1K∥1. (17)

Now we bound the ℓ1-norm as follows:

∥An−l
l 1K∥1 6 ∥An−l

l ∥1∥1K∥1 = ∥An−l
l ∥1K,

where the matrix norm is induced by the ℓ1-norm and the
inequality follows from submultiplicativity of the norm. Using
Gel’fand’s formula yields

lim
n→∞

∥An−l
l 1K∥

1
n−l
1 6 lim

n→∞
∥An−l

l ∥
1

n−l
1 K

1
n−l = λmax(Al),

(18)
being l fixed. From (17) and (18) we can upper bound the
exponent of |Sn(σ, ρ)| as follows:

v(σ, ρ) 6 lim
n→∞

1

n− l
log2 |S(l)

n |

= lim
n→∞

log2 ∥An−l
l 1K∥

1
n−l
1 6 log2 λmax(Al).

Tightening the bound with respect to l yields the theorem.

In general, λmax(Al) can be evaluated numerically. For
some specific l, we can find the structure of Al and de-
rive λmax(Al) explicitly. In particular, consider l satisfying
l − 1 6 σ + lρ < l. Then, l ∈

(
σ

1−ρ ,
σ+1
1−ρ

]
. As 1

1−ρ > 1
holds, such integer l does always exist. The smallest integer
is l1 :=

⌊
σ

1−ρ

⌋
+ 1. When l = l1, the structure of Al1 is

Al1 :=

 Bl1 Bl1

1 0
0 0

 , Bl1 :=

12

. . .
12

 ,

where the size of Bl1 is (2l1 − 2)× 2l1−1. It can be verified
that the characteristic polynomial of Al1 is

F (λ) = λ2l1−l1

(
λl1 −

l1−1∑
i=0

λi

)
=: λ2l1−l1 F̄ (λ). (19)

The largest eigenvalue of Al1 , λmax(Al1), is the largest real
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Fig. 2. The harvest-and-transmit scheme. The transmitter alternates harvest
and transmission phases of length m− k and k symbols, respectively.
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Fig. 3. A modified harvest-and-transmit scheme which employs length-L
supersymbol 00 · · · 01 satisfying Lρ > 1.

root of F (λ) = 0, i.e., the largest real root of F̄ (λ).

B. Lower Bounds on v(σ, ρ)

To lower bound v(σ, ρ), we bound the cardinality of the
feasible set by employing a specific transmission strategy
referred to as harvest-and-transmit strategy [4]. See Fig. 2.
According to the harvest-and-transmit strategy, transmitter
alternates harvest and transmission phases of length m − k
and k symbols, respectively. The battery can store energy up
to a preset level σ′ during the harvest phase, and can use the
stored energy to send k symbols in the transmission phase.
The following lemma shows a lower bound on v(σ, ρ).

Lemma 1. The exponent of |Sn(σ, ρ)| satisfies

v(σ, ρ) > max
1−ρ6σ′6σ

k>0

1

k + ⌈σ′/ρ⌉
log2

[ ⌊σ′⌋∑
i=0

(
k

i

)]
. (20)

Proof. Suppose the length-n input sequence is divided into
subsequences of length m, each subsequence representing a
harvest-and-transmit cycle. The harvest phase lasts for ⌈σ′/ρ⌉
symbols, therefore the transmission phase length is k := m−
⌈σ′/ρ⌉. During the transmission phase, at most ⌊σ′⌋ symbols
1 can be transmitted. Accordingly, the number of sequences
that we can transmit is

∑⌊σ′⌋
i=0

(
k
i

)
. Then, |Sn(σ, ρ)| is lower

bounded as follows, |Sn(σ, ρ)| >
(∑⌊σ′⌋

i=0

(
k
i

))n/m
, hence

v(σ, ρ) is lower bounded by (k+ ⌈σ′/ρ⌉)−1 log2
(∑⌊σ′⌋

i=0

(
k
i

))
.

The statement follows by tightening the bound with respect to
σ′ ∈ [1− ρ, σ] and k > 0.

Note that the cost of symbols 1 can be reduced from 1
to 1 − ρ by using the energy harvested during the slot. This
improvement allows to lower bound v(σ, ρ) as follows.

Theorem 3. The exponent of |Sn(σ, ρ)| satisfies

v(σ, ρ) > max
1−ρ6σ′6σ

k>0

1

k + ⌈σ′/ρ⌉
log2

[ ⌊σ′/(1−ρ)⌋∑
i=0

(
k

i

)]
. (21)

Proof. By harvesting energy in the slot where a symbol 1 is
transmitted, the actual cost of transmission is 1−ρ. Therefore,
the number of 1s that can be transmitted in the transmission
phase is at most ⌊σ′/(1− ρ)⌋.
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Fig. 4. Bounds on C(σ, ρ) as a function of ρ for σ = 0.7 and q = 0.01.

By slightly modifying the harvest-and-transmit scheme, we
can constrain the transmitter to use either 0 or a length-L unit-
weight subsequence 00 · · · 01 during which the transmitter
always harvests energy (cf. Fig. 3). Accordingly, we can
think of the length-L subsequence as a ‘supersymbol’. The
peculiarity of this scheme is that, by choosing a sufficiently
large L satisfying Lρ > 1, it allows to use infinitely many
times the supersymbol regardless of the battery level (provided
that σ > 1 − ρ). This implies the following lower bound on
v(σ, ρ).

Theorem 4. Given σ > 1− ρ. For L > 1/ρ, the exponent of
|Sn(σ, ρ)| satisfies

v(σ, ρ) > max
0<α61−1/L

(1− α)H2

(
α

1− α
· 1

L− 1

)
. (22)

Proof. Let i0 and i1 be the number of 0s and length-L
supersymbols transmitted, respectively. Transmission starts
with a number of 0s equal to ⌈σ/ρ⌉; then i0 symbols 0 and
i1 supersymbols can be transmitted in any of the possible
combinations, which are

(
i0+i1
i1

)
. The necessary number of

time slots is k := i0 + Li1 (cf. Fig. 3), hence the following
exponent is achievable:

v(σ, ρ)
(a)
> lim

k→∞

1

k + ⌈σ/ρ⌉
log2

(
k − i1(L− 1)

i1

)
(b)
> lim

k→∞

[
k − i1(L− 1)

k + ⌈σ/ρ⌉
H2

(
i1

k − i1(L− 1)

)
− log2[k + 1− i1(L− 1)]

k + ⌈σ/ρ⌉

]
where: (a) follows from n = k + ⌈σ/ρ⌉ and by counting the
number of possible sequences that can be transmitted; and (b)
follows from a standard lower bound of the binomial coeffi-
cient. The statement follows by setting α = i1(L−1)/k and by
letting k → ∞, and by maximizing over 0 < α < 1−1/L.

V. NUMERICAL RESULTS

In this section, we present numerical results and evaluate
the bounds established in the previous section. Figs. 4 and 5
show upper and lower bounds on capacity as a function of ρ
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0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Crossover probability q

R
at
e
(b
it
s/
sy
m
b
ol
)

UB, C(∞, ρ)
UB, Theorem 2
UB, Theorem 2, l = l1
LB, Theorem 3
LB, Theorem 4

Fig. 6. Bounds on C(σ, ρ) as a function of q for (σ, ρ) = (0.78, 0.7).

with σ = 0.7 and σ = 1.3, respectively. Some of the bounds
are stair functions because of the presence of floor and ceiling
functions in their mathematical expressions. Bounds derived
in Theorem 2 and 4 are depicted according to their numerical
simulations, which may be conservative due to suboptimality
of solutions of involved optimization problems.

In Fig. 4, the upper bound in Theorem 2 is zero for ρ < 0.3.
Indeed, for such low energy arrival, it results σ < 1 − ρ and
C(σ, ρ) = 0 (cf. III-A2). Upper and lower bounds are shown
to be very close for low (ρ < 0.4) and high (ρ > 0.95) energy
arrival rates. The behavior of C(σ, ρ) for low energy arrival
rate is different when σ > 1. As shown in Fig. 5, it is possible
to reliably communicate at nonzero rate for any ρ > 0.

In both Figs. 4 and 5, the tighter lower bounds are provided
by either Theorem 3 or 4. The best upper bounds are provided
by either Theorem 1 or 2. It is noteworthy that for ρ > 0.5,
the upper bounds on C(σ, ρ) in Theorem 2 when l = l1 is
coincident with that in Theorem 2 when optimizing over all l.
This exhibits that for large ρ the Hamming weight constraint
for length-l1 subsequences becomes the most sensitive one
among all Hamming weight constraints for subsequences.
Fig. 6 shows capacity bounds as a function of the crossover

probability q for fixed (σ, ρ) = (0.78, 0.7). It is shown that
lower bounds are close to the capacity of a system with infinite
battery even for small battery size, i.e., σ < 1.

VI. CONCLUSION

We investigated the capacity of EHBSCs with (σ, ρ)-power
constraint, where ρ is the energy arrival rate and σ is the
battery size. Upper and lower bounds on the channel capacity
were derived in terms of the normalized exponent of the
cardinality of the set of feasible input sequences. Upper
bounds were derived by relaxing some of the constraints
posed by the harvesting process. Lower bounds were de-
rived by applying the binary entropy-power inequality and
by employing variations of the harvest-and-transmit scheme.
Numerical results showed that proposed upper and lower
bounds are close, providing effective evaluations of channel
capacity and insights for practical signaling schemes useful in
energy harvesting communications.
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