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Abstract—A multiple-access channel where point processes are
randomly transformed by timing channels and then superposed
is considered. An achievable rate region for the K-user channel
is established. A single-user achievable rate in the presence of
“many” interfering users is proposed. Results are applied to
exponential server timing channels.

I. Introduction

A. Background and Motivation

Queueing is an ubiquitous phenomenon in data networks
[1] and represents the archetypal example of mechanism that
may blur the timing information encoded into packet timings.
From the information-theoretic perspective, the capacity of a
queue was first investigated by Anantharam and Verdú in [2].
In that seminal paper, they found the capacity of the queue
with exponential server, that has been also referred to as the
exponential server timing channel (ESTC) in many subsequent
works, proposed capacity bounds for the queue with general
server, and laid the foundation for several future developments
[3]–[8].

Almost all of the works that followed were devoted to
the study of point-to-point timing channels as embodied in
the single-server queue with one input arrival process and
one output departure process. In the presence of multiple
arrival processes, each linked to a different user, a multiuser
communication through the queue occurs: this model was
studied in [6], where the capacity region was found, and it
was shown that it was achievable via time-division. From
both a practical and theoretical perspective, it is of interest the
case where the output of different queues is superposed and a
receiver observes the superposition of departure processes in
order to decode the messages.

In this paper, we address the problem of finding an achiev-
able rate region for superposed point processes, where each
point process in the superposition is the output of a timing
channel, that displaces the input process points (see Fig. 1).

The model in this paper is similar to, but different from,
the photon multiple-access channel with no dark current and
peak-power constraint only [9]. The photon channel was
widely adopted for the study of optical communications [10]–
[13]. In the single-user photon channel, a Poisson counting
process Nt is driven by a waveform �.t/, that depends on
the message to transmit, and a possibly nonzero constant
intensity term �0, that is termed dark current. The intensity
of the process Nt is thus �.t/ C �0, and the capacity is

the maximal mutual information between �.t/ and Nt . The
single-user capacity of the photon channel was found by
Kabanov in [10] and Davis in [11], and the error exponent
by Wyner in [12], [13]. In the multiuser setting, K parallel
channels, each driven by the intensity function of a different
user, are summed. The counting process is, in this case,
Nt D N 0

t CN 1
t C� � �CNK

t , where N 0
t and N k

t are the counting
process generated by dark current and user k, respectively.
The main result for the multiple-access channel was given
by Lapidoth and Shamai in [9], where the capacity region of
the two-user channel was found. The analogy with a timing
channel is not straightforward. In the photon channel, each
encoder generates an intensity function, rather than a set of
points. However, following the approach of Wyner [12], a
timing channel with memoryless insertions and deletions can
be regarded as a the photon channel. The difference with
queueing systems is therefore that packets are neither deleted
nor inserted in queues with infinite buffer (provided that the
system is stable), and that the channel has memory.

A different problem, that may share some non-trivial analo-
gies with the present work, is that of finding the Poltyrev
capacity (normalized logarithmic intensity) of point processes
subject to random displacements. This problem was investi-
gated by Anantharam and Baccelli for both the single-user and
the multiuser AWGN channel in [14] and [15], respectively.

B. Contributions

In this paper we derive an achievable rate region for the
multiple-access channel given by the superposition of point
processes, each being the output of the timing channel of a
different user. We provide the intuition behind our results, that
are also specialized to the case where each timing channel is
the ESTC (queue with exponential server).

Notations: The convex hull of the set A is denoted co.A/,
and

V
denotes the logical ‘and’ operator.

II. SystemModel

Two users share a common resource (time) and want to
communicate towards a common receiver (see Fig. 1). From
the mathematical standpoint, the signal transmitted by each
user is a point process on the real line. Instead of describing
the point process via a random measure, we represent each
point process through the random sequence of its points.

Consider a number of channel uses per user equal to n,
that is also the number of points transmitted by each user.
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Fig. 1: System model.
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Fig. 2: Point process realization.

User i transmits the point sequence Xni , that is randomly
transformed into Y ni by the timing channel (TC) PY n

i
jXn
i

.
The superposition Y 2n of the two processes Y n1 and Y n2 is
received (see Fig. 2). The overall superposed timing channel
(STC) is formally described by the conditionally probability
distribution PY 2njXn

1
;Xn
2

. Each TC PY n
i
jXn
i

can have memory,
and the superposition channel is dimension-mismatched.

We assume that the point processes of the two users are
stationary with same intensity �. Denote .R1; R2/ a rate pair.
The objective of this paper is to find an achievable rate region
R 3 .R1; R2/ of rate pairs valid for a large class of STCs.
The extension of the system model to the K-user case is
straightforward.

III. Rate Region

From the general theory of multiple access channels, it is
known that the following rate region Rn is achievable [16]:

RnW
R1 6

1
n
I.Xn1 IY Kn/;

:::

RK 6 1
n
I.XnK IY Kn/;

(1)

and that the capacity region C is the closure of [n>1Rn. In
this section we will find a single-letter characterization of an
achievable region for a large class of STCs on the basis of
the multi-letter characterization (1) for the two-user channel.
Considerations about the K-user channel are postponed in
§ IV.

A. Converse Region

As converse region we intend a region of forbidden rate
pairs. Since each user in the two-user STC cannot have higher

capacity than that achievable alone (without the presence of the
other user), any rate Ri > Ci , where Ci is the capacity of the
single-user TC, is not achievable by user i . Formally, denote
M 2n
i the 2n-binary vector such that Mik D 1 if Yk 2 Y ni ,

and Mik D 0 otherwise, i.e., Mik is a marking process that
indicates whether point k in the superposition belongs to the
point process of user i (Mik D 1) or not (Mik D 0). Since

I.Xni IY 2n/ 6 I.Xni IY 2n;M 2n
i / D I.Xni IY ni /; (2)

then any rate Ri higher than

Ci D lim
n!1

1

n
sup
PXn
i

I.Xni IY ni / (3)

is not achievable.

B. Two-User Achievable Rate Region

Theorem 1. Let define the two following regions: the time-
division (TD) region RTD,

RTDW R1
C1
C R2

C2
6 1; (4)

and the single-user region with penalty RSU,

RSUW
R1 6 C1 � 2;
R2 6 C2 � 2;

(5)

where all rates are expressed in bits per channel use. An
achievable rate region for the two-user with same intensity
STC is given by the convex hull (denoted co.�/) of the union
of the two regions RTD and RSU:

R D co.RTD [RSU/: (6)

Explicitly, region R is characterized as follows,

RW
(

R1
C1�2 C

R2
2

6 C2
2

V R1
2
C R2
C2�2 6 C1

2
if 1
C1
C 1
C2

6 1
2
;

R1
C1
C R2

C2
6 1 otherwise;

(7)
where all rates are expressed in bits per channel use.

The achievable rate region R is shown in Figs. 3a-3b.

Proof: The proof is divided in three steps.

Step 1: Time-division. Since .R1; R2/ D .C1; 0/ and
.R1; R2/ D .0; C2/ are two achievable pairs, all rates on the
line between .C1; 0/ and .0; C2/ are achievable, therefore the
region RTD in (4) is achievable via TD.

Step 2: Single-User with Penalty. The two-user channel
region Rn is given by

RnW
R1 6

1
n
I.Xn1 IY 2n/;

R2 6
1
n
I.Xn2 IY 2n/:

(8)

Applying the chain rule to the mutual information term in (8)
for user 1 yields

I.Xn1 IY 2n/ D I.Xn1 IY 2n;M 2n
1 / � I.M 2n

1 IXn1 jY 2n/; (9)



O

C2

C1

R D RTD

R1 (bits/use)

R2 (bits/use)

(a) 1
C1
C 1
C2
> 1
2

.

O

C2

C1C1 � 2

C2 � 2

R D co.RTD[
RSU/

R1 (bits/use)

R2 (bits/use)

(b) 1
C1
C 1
C2

6 1
2

Fig. 3: Achievable rate regions.

where M 2n
1 marks the points of user 1 in Y 2n (as formally

defined in § III-A). By finding a lower bound of (9) we identify
a region that is included in C , hence it is achievable. The first
term in (9) satisfies

I.Xn1 IY 2n;M 2n
1 / D I.Xn1 IY n1 /; (10)

since Y n1 is a sufficient statitistic of ŒY 2n;M 2n
1 � for Xn1 . The

second term in (9) is bounded as

I.M 2n
1 IXn1 jY 2n/ D H.M 2n

1 jY 2n/ �H.M 2n
1 jY 2n; Xn1 / (11)

6 H.M 2n
1 /; (12)

where the inequality follows because entropy is nonnegative
and conditioning cannot increase entropy. Denote M2n

1 the
set of possible realizations of the marking process M 2n

1 .
Regarding each realization M 2n

1 as a 2n-binary string yields

H.M 2n
1 / 6 log jM2n

1 j D log

 
2n

n

!
(13)

where j � j stands for the cardinality of the set in the argument,
and the equality follows since the number of 1 in each 2n-
vector realizationM 2n

1 is equal to n. Using the fact that
�
n
pn

� D
2nH2.p/CO.lnn/, where H2.p/ D �p log2 p� .1�p/ log2.1�
p/, it results

lim
n!1

1

n
H.M 2n

1 / 6 2 bits/use: (14)

Another perhaps simpler way to derive the above bound is as
follows:

H.M 2n
1 / 6 2nH.M1/ 6 2nH2.1=2/ D 2n bits: (15)

Using (15) in (12), and (10) in (9) results in

1

n
I.Xn1 IY 2n/ >

1

n
I.Xn1 IY n1 / � 2 bits/use; (16)

and taking the supremum over all feasible input distributions
yields

R1 > C1 � 2 bits/use: (17)

A similar relation holds for user 2, that is,

R2 > C2 � 2 bits/use: (18)

Therefore, the rate region in (5) is achievable.

Step 3: Time-sharing. By using time-sharing [16], the
achievable region R is given by the convex hull of the union
of the two regions RTD and RSU (cf. (6)). The two achievable
regions RTD and RSU overlap, as depicted in Figs. 4a-4b. In
particular, it results RSU � RTD whenever

.C1 � 2; C2 � 2/ 2 RTD ” C1 � 2
C1

C C2 � 2
C2

6 1 (19)

” 1

C1
C 1

C2
>
1

2
: (20)

In this case, the achievable region R is given by time-division
only, i.e., R D RTD, that is shown in Fig. 4a. Otherwise,
.C1�2; C2�2/ … RTD: in this case, using time-sharing allows
to achieve all rates on the lines between .0; C2/ and .C1 �
2; C2 � 2/, and between .C1 � 2; C2 � 2/ and .C1; 0/, i.e.,

R D co.RTD [RSU/ D
˚
R1 > 0;R2 > 0 W

R1
C1�2 C

R2
2

6 C2
2

V R1
2
C R2

C2�2 6 C1
2

	
; (21)

as depicted in Fig. 4b.

IV. K-User Achievable Rate Region

Theorem 2. Let K be the number of users and define the two
following regions: the time-division region RTD,

RTDW
KX
iD1

Ri

Ci
6 1; (22)

and the single-user region with penalty RSU,

RSUW Ri 6Ci�ŒK logK�.K�1/ log.K�1/�; i 2 Œ1 WK�: (23)

A simpler yet weaker (but asymptotically equivalent) single-
user region is:

R0SUW Ri 6 Ci � log.Ke/; i 2 Œ1 WK�: (24)
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Fig. 4: Illustration of the regions in the proof of Theorem 1.

The two following rate region R and R0, with R0 � R, are
achievable: R D co.RTD [RSU/, R0 D co.RTD [R0SU/.

Proof: The time-division region RTD follows similarly to
the proof of Theorem 1. Along similar lines, in order to derive
the single-user region RSU we can focus on user 1 because
the problem is symmetric. From the chain rule we have

I.Xn1 IY Kn/ D I.Xn1 IY Kn;MKn
1 /�I.MKn

1 IXn1 jY Kn/; (25)

where MKn
1 marks the points of user 1 in Y Kn. We find a

lower bound of (25) as follows:

I.Xn1 IY Kn/ > I.Xn1 IY n1 / �H.MKn
1 /: (26)

An upper bound of the second term is given by

H.MKn
1 / 6 log

 
Kn

n

!
(27)

since since the number of 1 in each Kn-vector realization
MKn
1 of the marking process is n. As n ! 1 with K fixed

one has

lim
n!1

1

n
log

 
Kn

n

!
D K logK � .K � 1/ log.K � 1/: (28)

Therefore, it results asymptotically

lim
n!1

1

n
H.MKn

1 / 6 K logK � .K � 1/ log.K � 1/: (29)

Another perhaps simpler way to derive the above bound is as
follows:

1
n
H.MKn

1 / 6 1
n
KnH.M1/

6 KH2.1=K/

D K� 1
K

logK � �1 � 1
K

�
log

�
1 � 1

K

��
D K logK � .K � 1/ log.K � 1/:

(30)

Using (30) in (26) results in

1

n
I.Xn1 IY Kn/ >

1

n
I.Xn1 IY n1 /
� ŒK logK � .K � 1/ log.K � 1/�: (31)

Taking the supremum over feasible input distributions yields

R1 > C1 � ŒK logK � .K � 1/ log.K � 1/�: (32)

Thus the rate interval specified in (23) is achievable. Since the
penalty term (30) can be expanded as

K logK � .K � 1/ log.K � 1/ D log.Ke/CO� 1
K

�
; (33)

and, in particular, K logK � .K � 1/ log.K � 1/ < log.Ke/,
(33) is further lower bounded as follows,

R1 > C1 � log.Ke/; (34)

that yields (24).

Remark 1. Note that (23), for K D 2, reduces to Ri 6 Ci �
2 log 2, that yields the bounds in (5) when the base of the
logarithm is equal to 2 and rates are thus expressed in bits
per channel use (as in Theorem 1), while the bound in (24) is
slightly weaker, Ri 6 Ci�log.2e/. The penalty term increases
from 2 bits/use to log2.2e/ � 2:44 bits/use.

V. Applications

In this section we apply the above bounds to the superpo-
sition of ESTCs, i.e., each TC PY n

i
jXn
i

is given by the queue
with exponential server. Each point in the process represents
an absolute (cumulative) time and is referred to a single packet.
Following [2], the message of user i is encoded into a sequence
of interarrival times Ani , that are related to points Xni as
follows: Xik D

Pk
lD1Ail , that is, Xik is the arrival time of

packet k in the queue of user i . Similarly, denoting Dn
i the

packet interdeparture times from the queue of user i , it results
Yik D

Pk
lD1Dil , that is, Yik is the departure time of packet

k from the queue of user i . Suppose that, for all users, arrival
and service rates are � and �, respectively. Hence, the single-
user capacity Ci � C (irrespective of i ). In [2], it was found
that the single-user capacity (with output rate �) is given by
C D log.�=�/ information units (depending on the base of
the logarithm) per channel use. Rates in RSU (cf. (5)) assume
the form

Ri 6 log2
�

�
� 2 D log2

�

4�
bits/use: (35)



The achievable region R is given by (cf. (7)):

RW

‚
R1

log2
�
4�

C R2
2

6 1
2

log2
�
�

V
R1
2
C R2

log2
�
4�

6 1
2

log2
�
�

if � > 16�;

R1 CR2 6 log2
�
�

otherwise;

(36)

where all rates are expressed in bits per channel use. In
particular, (36) shows that rates larger than those in RTD are
achievable when

1

�
6
1

8
� 1
2�
: (37)

That is, time-division is suboptimal when the average service
time 1=�, that is responsible for blurring the timing informa-
tion, is less than a certain fraction (in this case equal to one-
eighth) of the average time interval between two next packets
1=.2�/. When �=� ! 1, the penalty for each user (that is
equal to at most 2 bits/use) becomes negligible with respect
to C , since C !1.

A similar result holds for the K-user channel. Let us present
an asymptotic expression following the same spirit of the
above derivation. The following region is achievable (cf. (23)-
(24)):

Ri 6 log
�

�
� P; i 2 Œ1 WK�; (38)

where P is the penalty term equal to either K logK � .K �
1/ log.K � 1/ or the more conservative log.Ke/. It results
R D RTD whenever

.C � P; � � �; C � P / 2 RTD ” C 6 K
K�1P; (39)

hence time-division is suboptimal when

�

�
> e

K
K�1P D Ke CO.logK/ (40)

where P in (40) is expressed in nats. There exists a (positive,
monotonically decreasing) sequence .�k/k>2 such that �=� >
K.e C �K/, and

1

�
6

1

e C �K
� 1
K�

: (41)

We can interpret (41) in the same spirit of (37). The term
1=.K�/ is the average time interval between two next packets
in the superposed point process. Therefore, as above, when the
average service time is less than a certain fraction (in this case
1=.e C �K/ ! 1=e as K ! 1) of the average time interval
between two next points, there exists a code that allows to
achieve rates beyond RTD.

VI. Discussion

We proposed an achievable rate region for the STC given
by the convex hull of the union of the time-division region
RTD and the single-user region RSU. Let discuss the intuition
behind the backoff from the single-user capacity in RSU.
For clarity of exposition, consider K D 2. The backoff can
be regarded as the (maximum) amount of information per
channel use needed by the receiver to identify, among all
received points, the subset of points of the user to decode.

Since two points are received (on average) per channel use
and each point may belong to either user 1 or user 2 with
equal probability, it results that 2 bits/use are sufficient to
discriminate the points between users. The 2-bits-per-use
penalty is referred to as the maximum backoff since it is
derived from the inequality I.M 2n

1 IXn1 jY 2n/ 6 H.M 2n
1 /

(cf. (12)). For a large class of TCs, time-division might result
in I.M 2n

1 IXn1 jY 2n/ 6 � with � > 0 (independent on n).
The idea is that time-division guarantees the separation of
the two users. Indeed, by appropriately assigning beforehand
each user to a different subinterval, M 2n

1 is approximately
a priori known and H.M 2n

1 / becomes negligible (the whole
term n�1I.M 2n

1 IXn1 jY 2n/ is vanishing in this case). At the
other extreme, when Y n1 and Y n2 are two point processes
that “often interleave,” M 2n

1 becomes an alternating binary
sequence with the same number of occurrences of each binary
symbol, and H.M 2n

1 / may approach 2n bits. This might be the
case for Poisson point processes: indeed, the fact that Poisson
processes are closed under superposition and thinning suggest
that H.M 2n

1 / � 2n bits (when both Y n1 and Y n2 have same
intensity).
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