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Abstract—A queue timing channel with random arrival and
service times is investigated. The message is encoded into a
sequence of additional delays that packets are subject to before
they depart from the queue. We derive upper and lower bounds
of the channel capacity for general arrival and service processes,
and general load. We establish the channel capacity for the queue
with exponential server and no load constraint by keeping the
queue stable. We discuss the consequences of this result and
describe a possible application where the timing channel is used
to send covert information.

I. Introduction
A. Background and Motivation

In the seminal paper “Bits through Queues” (BTQ), Anan-
tharam and Verdú [1] introduced the concept of capacity of a
queue. A queue was regarded as a mechanism that blurs the
timing information of the stream of packets at its input. In
particular, a message is encoded into time intervals between
packets, and the decoder infers the message upon observation
of the sequence of interdeparture times, that are random due
to the random service time and the queueing processes. The
capacity of the exponential server queue with arrival rate �
and service rate � is C.�/ D � log.�=�/ nats/s. Moreover,
for any fixed �, the arrival rate e�1� maximizes C.�/ and
allows to achieve the capacity of the queue, C D e�1� nats/s.

Notable contributions that followed include the works of
Bedekar and Azizoglu [2], where analog results were derived
for the discrete-time setting, Arikan [3], where upper (sphere-
packing) and lower (random-coding) bounds for the reliabil-
ity function were provided, Sundaresan and Verdú [4], [5],
where the maximum-likelihood decoding and a rigorous point-
process formulation of queue’s capacity were investigated,
Prabhakar and Gallager [6], where the entropy rates of arrival
and departure processes and the timing capacity of discrete-
time queues with Poisson inputs and Poisson outputs were
studied, and Wagner and Anantharam [7], where the zero-rate
reliability function for the queue with exponential server was
found.

It is of practical and theoretical interest the case where not
only the service process but also the arrival process is random:
Is it still possible to transmit information at a nonzero rate
over a queue timing channel when both interarrival and service
times are random?

B. Contributions
In this paper we propose a scheme where the service

time process is modified by the introduction of an additional

delay sequence that encodes the message. The service process
.Si /i>1 is thus formed by the nominal service process .Bi /i>1,
that is defined by the model of the queue, and the delay process
.Ti /i>1, that encodes the message to be transmitted. We show
that the capacity of the queue with random arrivals and random
exponential service times is equal to (in a specific sense) the
capacity of the queue with random exponential service times
only (as in [1]). Therefore, even when the arrival process is
random, there is no loss in capacity as long as the transmitter
can encode a message in the delay process. We discuss in
detail the consequences of such a result.

C. Notation

The exponential distribution with mean 1=� is denoted
e�. In accordance with Kendall’s notation, we succinctly
refer to the model with additional delays as the �= � + � =1
queue, where we use the plus (’+’) sign to indicate that the
service time consists of two components and the dot (’�’) to
indicate a distribution. Moreover, by following Anantharam-
Verdú’s notation, we leave the dot (’�’) in place of the
(unknown) input distribution, while all other distributions are
specified in accordance with Kendall’s notation. For example,
when interarrival times are general and nominal service times
are exponentially distributed, we refer to the model as the
G=M+ � =1 queue. We use the above Kendall-Anantharam-
Verdú’s notation throughout the paper.

II. Model

A. System Model

The system model is depicted in Fig. 1. A message m is
transmitted over a timing channel as follows. A queue is fed
by packets that are generated with random interarrival times
An WD .A1; : : : ; An/, that is, packet i arrives at time

Pi
kD1Ak .

Each packet waits in the queue before it is served. The nomial
service time of packet i is denoted Bi . Once it is served,
packet i is additionally delayed by a time Ti . As a matter of
fact, the service time is Si WD Bi C Ti , and consists of two
components, one that is random, that is Bi , and one that is
intentionally introduced, that is Ti . The message m is encoded
in the sequence of delays T n WD .T1; : : : ; Tn/. We will refer
to Bn, T n and Sn as nominal service time, delay, and service
time sequences, respectively. Packet i departs, therefore, at
time

Pi
kD1 Uk D

Pi
kD1Ak C Sk . Finally, the decoder is fed

by U n, on the basis of which it infers the transmitted message
m.



Encoder

m

An

T n

Decoder
U n Om

Fig. 1: System model of the timing channel. Packets are generated
and enter the queue with random interarrivals An. The timing
encoder maps a message m into a sequence of delays T n D
T n.m/. Each packet experiences a service time that depends
on the nominal service time, due to the queue, and the
additional delay, due to the encoding (we emphasized this by
representing the server as a circle with a diameter). A decoder
observes the interdeparture times U n, upon which the message
m is inferred.

There are two main differences with respect to the model in
BTQ: first, the message is encoded in the sequence of delays
that contribute to the service times, rather than in the sequence
of interarrival times; second, there are two sources of noise,
namely the random arrivals An and random nominal service
times Bn, rather than service time Bn only.

B. Problem Statement

Definitions of code and capacity are adapted from [1].

Definition 1. (Code) An .n;M; T ; �/-code consists of a
codebook of M codewords, each of which is a vector of
n nonnegative delays .t1; : : : ; tn/; a decoder which upon
estimation of all n departures selects the correct codeword
with probability greater than 1� �, assuming that the queue is
initially empty; and the nth departure from the queue occurs
on average no later than T . The rate of an .n;M; T ; �/-code
is defined as .logM/=T .

Since in any stable queue the interdeparture rate is equal to
the interarrival rate, we have T D n=�. Definitions of capacity
C , �-achievable rate, and capacity C.�/ at output rate �, are
identical to those in [1], and are not reported here.

The problem is that of finding the capacity C.�/ at output
rate � and the capacity C .

III. Results

A. Preliminaries

Interdeparture times U n are related to interarrival times An

through service times Sn and idle (or free) times1 F n (see
Fig. 2). As mentioned in the previous section, the sequence
of service times Sn is split into a random term Bn and a
delay term T n, the latter of which encodes the message. The
encoder can choose the distribution of the nonnegative random

1We denote idle times with F n instead of the more natural In in order
to maintain I denoting mutual information only. We can think of Fi as the
“free” time before the arrival of packet i , whence the F .

variables T n, that in turn modifies interdeparture times U n,
while both An and Bn are sources of noise. Interval Fi is the
time interval the queue is idle before packet i arrival, that is, it
is the time between packet i �1 departure and packet i arrival
if this time is positive, otherwise it is nil [1]:

Fi D fi .Ai ; U i�1/ WD
 

iX
kD1

Ak �
i�1X
kD1

Uk

!C
; (1)

where .x/C WD maxf0; xg. Note that Fi is a deterministic
function of Ai and U i�1. From the above, the interdeparture
time Ui is:

Ui D Fi C Si D fi .Ai ; U i�1/C Bi C Ti : (2)

For stable queues with packet interarrival rate �, i.e., E Œ Ai � D
1=�, it results also E Œ Ui � D 1=�. Denote E Œ Bi � D 1=�,
E Œ Ti � D 1=ˇ, and E Œ Si � D 1=�. Stability holds iff � < �.
This is usually expressed by writing an equivalent constraint
on the load � WD �=�, that is, � < 1. In general, when the
load is equal to �, it results

1

ˇ
D E Œ Ti � D E Œ Si � � E Œ Bi � D 1

�
� 1
�
D �

�
� 1
�
: (3)

B. Upper Bounds

We present two converse results valid for any load � 2
Œ0; 1/: the first, Lemma 1, is valid for the general server, and
the second, Theorem 1, is valid for the exponential server.

Lemma 1 (Converse, G=G+ � =1). The G=G+ � =1 queue with
output rate � satisfies

C.�/ 6 �Œ1 � log� � h.B/� nats/s (4)

irrespective of � 2 Œ0; 1/, where h.B/ is the average entropy
rate of the service time process, i.e.,

h.B/ D lim
n!1

1

n

nX
iD1
h.Bi /; (5)

when it exists.

Proof: Fano’s inequality and the data processing lemma
imply that:

logM 6
1

1 � � ŒI.T
nIU n/C log 2�: (6)

We bound the mutual information term by applying the chain
rule:

I.T nIU n/ D
nX
iD1

I.Ui IT n; U i�1/ � I.Ui IU i�1/

(a)
6

nX
iD1

I.Ui IT n; U i�1/

(b)D
nX
iD1

I.Ui IT i ; U i�1/

(c)D
nX
iD1

I.Ui IT i ; U i�1; Fi / � I.Ui IFi jT i ; U i�1/
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Fig. 2: Example of evolution of a queue. Interarrival and interdeparture times are denoted An and U n, respectively. Packet i arrives at timePi
kD1 Ak and departs at time

Pi
kD1 Uk . Service time Si is formed by two components, namely the nominal service time Bi and

the delay Ti . Idling time before packet i arrival is denoted Fi .

(d)
6

nX
iD1

I.Ui ITi ; Fi /

(e)D
nX
iD1

h.Ui / � h.Bi jTi ; Fi /

(f)
6

nX
iD1

sup
Ui�PU

EŒUi �D1=�
h.Ui / � h.Bi /

(g)D n.1 � log�/ �
nX
iD1

h.Bi /; (7)

where (a) follows by discarding a mutual information term
and since mutual information is nonnegative, (b) is implied
by Ui ?? T niC1, i.e., independence of Ui from future delays
T niC1 D .TiC1; : : : ; Tn/, (c) follows by Kolmogorov’s identity,
(d) follows by discarding the second mutual information term
in (c) and since Fi is a sufficient statistic of ŒT i�1; U i�1; Fi �
for Ui , (e) follows since entropy is invariant under translations,
(f) results by taking the supremum over distributions of
nonnegative random variables with given mean and from
independence of Bi on any other random variable, and (g)
follows by evaluating the supremum (that is attained by the
exponential distribution with mean 1=�). Introducing (7) in
(6) yields

logM
n

6
1

1 � �

 
.1 � log�/ � 1

n

nX
iD1

h.Bi /C log 2
n

!
; (8)

that yields the statement by letting n!1 and � ! 0.

The following theorem results from Lemma 1 by specializ-
ing the result to the G=M+ � =1 queue.

Theorem 1 (Converse, G=M+�=1, output rate �). The G=M+�
=1 queue with output rate � satisfies, irrespective of � 2 Œ0; 1/,

C.�/ 6 � log
�

�
nats/s: (9)

Proof: Since .Bi /i>1 is an i.i.d. process with marginal
PBi
D e� , 8i , it follows that h.Bi / D 1 � log � and h.B/ D

h.Bi /. The result then follows by using (4).

We note that the exponential server reaches the minimum
of (4) and, therefore, it yields the tightest converse. Moreover,
the two above converse results provide an upper bound for
the capacity of the G=G+ � =1 and G=M+ � =1 queues: by
introducing Fi as an input, the channel PUi jFi ;Ti

becomes
memoryless and the only remaining source of noise is Bi ,
which cannot be in any way inferred. Therefore, the upper
bound corresponds to the capacity of a memoryless additive
exponential channel with fixed mean.

C. Lower Bounds

We provide two achievable rates. The following Lemma 2
is based on the choice of an auxiliary channel and provides
an achievable rate for the G=G+ � =1 queue with fixed �

and �. Then we present in Theorem 2 the tightest bound by
optimizing the load.

Lemma 2 (Direct, G=G+ � =1, output rate �, load �). The
G=G+ � =1 queue with output rate � and fixed load � 2 Œ0; 1/
satisfies

C.�/ > � log
1
�

1��
�
C 1

�

nats/s: (10)

Proof: We start by lower bounding the mutual information
as follows:

I.T nIU n/ (a)D
nX
iD1

I.Ti IU n; T i�1/

(b)
>

nX
iD1

I.Ti IUi /; (11)

where (a) follows from the chain rule and by assuming i.i.d.
inputs T n, and (b) follows because removing data (in this case
ŒU i�11 ; U niC1; T i�1�) cannot increase mutual information. We
proceed by lower bounding each term I.Ti IUi / by means of
an auxiliary channel. From [8, Theorem (Auxiliary-Channel
Lower Bound)] it results

I.Ti IUi / > EŒ logQUi jTi
� � EŒ logQUi

�; (12)

where QTi
is any input distribution that maintains the stability

of the queue (� < �), QUi
D QTi

ı QUi jTi
denotes the



output distribution, and the expectation is carried with respect
to the original (true) channel. In particular, we choose the
memoryless channel

QUnjT nDtn.un/ D
nY
iD1

QUi jTiDti .ui / D
nY
iD1

e� .ui � ti /; (13)

where QUi jTi
D e� is the exponential distribution with mean

1

�
D EŒ Zi � D EŒ FiCBi � D 1 � �

�
C 1
�
D 1

�
� 1
�
C 1
�
; (14)

that implies

1

ˇ
D EŒ Ui � � EŒ Zi � D 1

�
� 1
�
D �

�
� 1
�
: (15)

In other words, our choice consists in regarding fZi WD
Fi CBigniD1 as a set of i.i.d. exponentially distributed random
variables. We choose QTi

in order to attain the maximum
mutual information of the auxiliary channel so to tighten
(12) as much as possible. Denote a D EŒ Ti � D 1=ˇ and
b D EŒ Zi � D 1=� for brevitiy. Based on [1, Theorem 3], the
optimum QTi

is as follows,

QTi
D b

aC b ı0 C
a

aC b e1=.aCb/; (16)

where ı0 is the point mass at 0. Denote e�1;�2
the hypo-

exponential distribution with rates �1 and �2, that is the
distribution of the sum of two independent exponentially
distributed random variables with rates �1 and �2. It is
formally equal to

e�1;�2
D �2

�2 � �1
e�1
� �1

�2 � �1
e�2
: (17)

The output distribution of the auxiliary channel when the input
distribution is (16) is, therefore, given by

QUi

(a)D b

aC b e1=bC
a

aC b e1=b;1=.aCb/
(b)D b

aC b e1=bC
a

aC b

 
1
aCb
1
aCb � 1b

e1=b �
1
b

1
aCb � 1b

e1=.aCb/

!
(c)D e1=.aCb/ D e�; (18)

where (a) follows from (16), the definition of the auxiliary
channel QUi jTi

, and e� D e1=b , (b) results from (17), and (c)
follows from straightforward computation. Introducing (16) in
(12) and using (18) yields

I.Ti IUi / > log
�

�
D log

1
�

1
�
� 1
ˇ

: (19)

The result follows by using (19) in (11) and using (15).

Fig. 3 shows the upper bound given in Theorem 1 (cf. (9))
and the lower bound in Lemma 2 (cf. (10)) as a function of
the ratio �=�, for a fixed load (on figure it is shown � D 0:75).
Let us rewrite the two bounds in nats/use as follows:

log
�
�

.1 � �/ �
�
C 1 6 C.�/ 6 log

�

�
nats/use: (20)
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Fig. 3: Rate bounds for the G=M+�=1 queue. Upper and lower bounds
refer to (9)-(10). The particular value of the load is � D 0:75.

The lower bound tends to log 1
1�� nats/use as �=� ! 1

(dashed line on figure), and it is nonnegative for �=� > 1=�.
The upper bound is unbounded as �=� ! 1, and it is
nonnegative for �=� > 1 (stability condition). Upper and lower
bound match when �! 1� as discussed in the next section.

Lemma 2 allows to derive the following achievability bound
by optimizing the load.

Theorem 2 (Direct, G=G+ � =1, output rate �, optimum load).
The G=G+ � =1 queue with output rate � satisfies

C.�/ > � log
�

�
nats/s: (21)

Proof: The result follows from Lemma 2 by taking the
supremum over � 2 Œ0; 1/, which is achieved as �! 1�.

The direct lemma above provides an achievable rate for the
G=G+ � =1 queue with fixed load � by using i.i.d. inputs and
by replacing the channel with memory with a worse additive
channel, namely a memoryless additive exponential channel,
with same first-order statistic. In this case, the lower bound
is maximized as � ! 1� (cf. (10)), i.e., in the heavy-traffic
regime: in words, the maximum rate is achieved when there
is no “free” (idle) time. The intuition is that, in the mentioned
regime, it results Fi

d�! ı0 and thus Zi WD Fi C Bi
d�!PB :

when Bi is exponentially distributed, then the selected auxil-
iary channel (additive exponential channel) tends to the true
channel. The resulting bound in Theorem 2 turns out to be
tight for the G=M+ � =1 queue with the optimum load, for
which capacity is found.

D. Capacity

In the below Theorems 3 and 4 we provide capacity results
for the G=M+ � =1 queue.

Theorem 3 (Capacity of G=M+ � =1, output rate �). The
capacity of a G=M+ �=1 queue with output rate � and nominal



service rate � is

C.�/ D � log
�

�
nats/s: (22)

Proof: The result follows by (9) and (21) from Theorem 1
and 2, respectively.

The result in Theorem 3 is very similar to the capacity of
the �=M=1 queue found in BTQ [1], provided that we identify
the nominal service rate � with the service rate � in [1]. The
difference that lies in the two models, however, imply that for
the G=M+ �=1 queue, the total service rate tends to � because
the delay process .Ti /i>1 tends to saturate the queue, �! 1�.
Nonetheless, given a queue with nominal service time that
is exponentially distributed with rate �, the capacity of both
schemes is given by (22). In other words, one can achieve
a rate equal to � log.�=�/ nats/s with the exponential server
queue by either feeding the queue with a Poisson process as in
[1] or delaying output packets according to a suitable process
(cf. (16)) as in the present paper. In both cases, the resulting
queue is the M=M=1 queue. It follows without surprise that
the maximum of the capacity with respect to � is same as in
[1], as shown in the below theorem:
Theorem 4 (Capacity of G=M+�=1). The capacity of a G=M+�
=1 queue is

C D e�1� nats/s: (23)

Proof: The result follows by taking the maximum of (22)
with respect to �, that is achieved for � D e�1�.

IV. Discussion

In this paper we presented a scheme to transmit a message
by means of a queue timing channel. In particular, we assumed
that both arrival and service times were random. The message
was encoded in a sequence of additional delays introduced as
part of the service time process. Each service time was thus
formed by a nominal service time, due to the server, and a
delay, due to the encoding. This scheme is different from that
in BTQ, where arrival times are used to encode the message.

We derived upper and lower bounds for general queue
models (general arrival and service processes) and general
load. We established the channel capacity for the exponential
server queue without load constraint, and showed that it is
equal (in a specific sense) to that derived in BTQ. From a
practical standpoint, the result in [1] requires that an infinite
set of packets is ready to be transmitted, while the model in
this paper does not require this assumption. This comes at the
price that the capacity is achieved by saturating the queue, and
therefore it can be applied to infinite-buffer queue only. In a
future work we will extend the above analysis to finite-buffer
queues.

We conclude by describing a possible application of the
model discussed in this paper, that differs from that possible
with the model in BTQ. In general, point-to-point timing
channels can be used to either convey covert information or
“piggyback” timing information on packets to increase the
capacity (or the energy efficiency) of the “compound channel,”

An U n

Case 2 Alice Charlie Bob

Case 1 Alice Bob

Fig. 4: Possible scenario. Case 1: Alice transmits a message to Bob
over the content channel and another message over the timing
channel. Case 2: Alice transmits a message to Bob over the
content channel; Alice’s packets are collected and forwarded
to Bob by Charie, who transmits another message to Bob using
the timing channel.

that is that using the timing channel on top of the traditional
content channel. Consider the following practical scenario.
Alice intends to send a message to Bob through a stream of
packets. The model in BTQ assumes that Alice generates and
introduces a stream of packets in her own queue according
to a specific arrival process: this is shown in Fig. 4 (Case
1). Contrarily, suppose now that the communication occurs
through a third party, Charlie, that forwards Alice’s packets to
Bob: this is shown in Fig. 4 (Case 2). Suppose that Charlie
cannot modify the content or the order of packets, and uses a
timing channel only to transmit a message to Bob. Alice may
or may not be aware of the presence of Charlie: in both cases,
suppose there is no coordination between them. Differently
from Alice, Bob always knows that Charlie is forwarding the
packets and is using a timing channel to send him a message.
When Alice transmits her packets, Charlie collects the stream
in his queue (it is natural to assume that the arrival process is
general or Poisson). Results in this paper apply to the capacity
of the timing channel between Charlie and Bob, that is made
possible thanks to Alice’s packet stream.
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